首页 理论教育 混凝土搅拌运输车减速机的设计分析

混凝土搅拌运输车减速机的设计分析

时间:2024-01-28 理论教育 版权反馈
【摘要】:在文章中,对搅拌车减速机的工作原理进行简要阐述,在设计中主要针对减速机的传动方案以及摆动机构的设计进行分析。混凝土搅拌运输车在运行以及等待卸料期间,都是利用取力装置对发动机的动力取出,并将驱动液压系统变量泵的机械能转化为定量马达,最后在减速机驱动搅拌筒装置实施混凝土的搅拌行为。

混凝土搅拌运输车减速机的设计分析

叶子力
(浙江格尔减速机械有限公司,浙江 温州 325409)

摘 要:混凝土搅拌机运输车的减速进行设计与分析能够减少产品的开发时间,降低实际工作的成本,提升工作的运行效率。在文章中,对搅拌车减速机的工作原理进行简要阐述,在设计中主要针对减速机的传动方案以及摆动机构的设计进行分析。

关键词:混凝土;搅拌运输车;减速机;设计

减速机是混凝土搅拌运输车的核心部件,它主要将液压输出转矩,利用减速机经过减速传给搅拌筒,以促进稳定、可靠的工作原理,从而完成对混凝土的搅拌工作。该减速机与传统的搅拌设备不同,它的外形简单、维护方便,由于系统的传动速度慢,能够在恶劣的工作环境下运行,所以该产品在我国被大量采用。

1.1 搅拌车的工作原理

搅拌车主要是依据汽车发动机作为源头的,它能作为搅拌车的运输动力,也能作为取力装置的系统中的变量泵,不仅保证了马达的输出转度,还促进了混凝土的自身质量。搅拌车能够实现四种功能,一种为搅拌功能,在搅拌过程中能够保证混凝土的质量。其二为装料功能,对混凝土进行搅拌转速期间,能够保证其与运输过程转动方向的一致性。其三为卸料功能,通过取力器、液压泵以及减速机等装置,将其传输带搅拌罐,能够加快卸料的速度。其四为清洗功能,为了防止混凝土粘在搅拌筒上,在完成卸料后,还要做好清洗工作。

1.2 搅拌车用减速机的工作原理

搅拌车利用的减速机是采用行星齿轮的传动结构来完成的,不仅能形成紧凑的结构、较大的承载力,还能促进较强的抵抗冲击力以及振动能力[1]。最为典型的传动为三级传动的减速机,它是由两个并排的行星组成的二级减速机,然后为了增大传动比,输入另一极的定轴转动,以完成三级传动的减速机。在市场上,还有一些传动方案的减速机,例如:一级NW行星齿轮、一级NGW行星齿轮传动,不仅要求具有较大的传动比,还要形成较高的承载能力。这些传动结构在使用过程中,各个齿轮上的受力情况都比较均匀,具有较高的承载力。例如:意大利的邦飞利减速机,它主要是内齿圈带动外部部件传递动力的,能够实现较小的轴向尺寸,不仅能够在要求比较苛刻的场所使用,还具有封闭式行星减速机的使用的较大的优势特征。所以说,封闭式行星减速机在工程机械中得到普遍使用,为了提高我国的设计水平,就要仔细分析传动结构的相关原理。

2.1 减速机传动方案的设计

2.1.1 确定传动比

确定传动比,主要就是确定传动比的大小。混凝土搅拌运输车在运行以及等待卸料期间,都是利用取力装置对发动机的动力取出,并将驱动液压系统变量泵的机械能转化为定量马达,最后在减速机驱动搅拌筒装置实施混凝土的搅拌行为。为了保证混凝土在搅拌期间的质量,在运输过程中,不仅要保证搅拌筒的转动,还要控制精度,为避免在运行期间出现浪费现象。这期间,就要对搅拌车的马达参数进行确定,特别是工作的排量、工作形成的连续压力以及峰值压力。要控制液压马达的转速,一般要控制搅拌筒以及减速机的传动比。对传动比数值进行计算,一般是在封闭式系统内部,根据运动中的相关原理以及传动的轮系进行计算。

2.1.2 确定参数

确定参数主要确定出三种参数,其一,确定行星轮数目,行星轮的数目与传动比相关。在动力传输过程中,行星轮的个数并不是越多就能获得较大的传动优点,一般会保持在2个到5个之间,如果选择的行星轮数目比较多,就会增加载荷均载的困难程度。而且,增加了行星轮的个数还能减少星架的刚度,从而制约实际的加工制造。一般情况下,要选择较多的行星轮个数,是在个别的低速级传动中实现的。其二,确定齿轮模数,首先,对行星轮的受力进行分析,根据减速机在实际使用的情况,对减速机的各个受力部位进行分析。然后,分析行星传动的齿轮强度设计要点,根据行星传动的结构特点以及运动特点,掌握应力的循环次数、动载系数以及速度系数。最后,对各个齿轮的模数进行计算,因为减速机容易冲击载荷的影响,具有较高的强度、韧性,所以在行星轮中,对轮系模数进行计算就要考虑齿根弯曲疲劳强度。其三,确定齿轮齿数,在行星传动设计中,对齿轮的齿数确定主要分析传动比的实际条件、同心条件、装配条件以及邻接条件[2]

2.1.3 计算封闭式行星齿轮传动效率(www.xing528.com)

影响封闭式行星齿轮传动效率的因素主要为四点,其一为啮合损失,它主要是由于齿廓间存在的摩擦产生的功率损失。其二为轴承的摩擦损失,因为齿轮在安装轴上受固定支撑的作用,容易产生较大误差。其三为液力损失,该损失的产生主要是由于齿轮啮合传动带动润滑油,在搅动与飞溅中产生的。其四为封闭功率损失,因为封闭功率主要存在于轮系内部,不仅与传动系数,与部件的摩擦速度、摩擦力都有较大关系。在对封闭式行星齿轮的传动效率计算期间,首先,要划分传动单元,然后对传动比进行分配,并计算出各个支路上的传动功率。

2.1.4 选择均载方法

由于行星齿轮传动形成的体积小,具有较高的承载能力,导致该特点的主要原因是多个行星轮进行的是分摊载荷,并形成功率分流。齿轮在实际传动期间,容易产生制造、装配等误差。在减速机转动过程中,利用的均载方法是行星架浮动方法,该方法不需要设计支撑,能够简化结构,促进了多级行星齿轮在传动过程中的合理布局。

2.2 摆动机构的设计

2.2.1 摆动形式

减速机的摆动机构是采用调心轴承、弧形齿摆动的方式形成的,该结构的体现是利用连接齿轮以及主轴承完成的,在实际工作中,不仅能有效的缓冲轴向力,还能提高浮动效果。但该结构的设计由于对鼓形齿的加工成本比较高,对设备形成较大的依赖性,要进行单独维修与更换[3]。对法兰摆动形式的输出,该结构主要是放在减速机的机壳上,不仅减速机的尺寸要减少,还要与摆动结构形成一体,以减少零部件的数量。对于靠减震动摆动,该结构的设计为搅拌车以及其他设备保留出了较大空间,能够满足工作的实际需要。

2.2.2 摆动机构设计

摆动机构的设计主要有三种形式。其一为底座球摆动,它主要减速机底部的支座上,并在底座以摆动球进行摆动动作。这种摆动方式能够将减速机、摆动机构分开,如果某个部分的零件出现损坏,不仅不会影响整个减速机,还能方便维修。特别对于弧形齿摆动,能够形成更大角度的摆动形式。而且,为了减少减速机的轴向尺寸,还能够为搅拌车上的其他零部件部分提供更大的空间。对于前支撑球摆动,它能促进摆动的角度,降低搅拌筒的重心,但由于支座为剖分结构,它与螺栓固结合在一起,容易引起支座的强度和摆动球。对于球窝摆动,该结构形式节省了鼓形齿的连接以及调心滚子轴承,不仅减少了减速机的轴向尺寸,减轻其重量,还大大的节省了成本,从而在维修过程中,简单的结构形成促进了较大的方便性。

减速机作为搅拌车最关键的一个部件,不仅能够搅拌,还能起到支撑搅拌桶的作用。我国使用的搅拌车减速机多是进口,在维修过程中形成了较大的不便,所以为了发展我国的搅拌车减速机,就应对该机械设备的设计原理进行思考,根据工况的实际要求,不仅要减轻减速机的本身重量和体积,还要降低机械设备的制造成本。

参考文献

[1]钱利霞,江玲玲.混凝土搅拌运输车传动装置的结构设计[J].制造业自动化,2011,33(3):154-155+166.

[2]陆赛杰,邹,潘月仙,等.混凝土搅拌运输车减速器优化设计[J].常州大学学报(自然科学版),2013,25(4):41-43.

[3]孟祥龙.基于Ansys的混凝土搅拌运输车减速机的破坏机理研究[D].长安大学,2014.

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈