首页 理论教育 揭秘体育中的神秘香蕉球

揭秘体育中的神秘香蕉球

时间:2023-12-02 理论教育 版权反馈
【摘要】:防不胜防的“香蕉球”揭开体育中的物理奥秘绿茵场上经典的任意球常常成为电视台反复播放的精彩瞬间,随着一枝劲射,足球在绕过“人墙”眼看要飞出场外时却又魔幻般拐过弯来直扑球门,这就是神秘莫测、防不胜防的“香蕉球”。“香蕉球”为什么会在飞行中拐弯?“香蕉球”便受到一个侧向的力,也称“马格纳斯力”,导致了飞行轨迹的弯曲。

揭秘体育中的神秘香蕉球

防不胜防的“香蕉球”

揭开体育中的物理奥秘

绿茵场上经典的任意球常常成为电视台反复播放的精彩瞬间,随着一枝劲射,足球在绕过“人墙”眼看要飞出场外时却又魔幻般拐过弯来直扑球门,这就是神秘莫测、防不胜防的“香蕉球”。

新香蕉球

香蕉球又称“弧线球”,指足球踢出后,球在空中向前并做弧线运行的踢球技术。弧线球常用于攻方在对方禁区附近获得直接任意球时,利用其弧线运行状态,避开人墙直接射门得分,当代足坛帅哥贝克汉姆就是射“香蕉球”的好手。香蕉球的原理是当球在空中飞行时,在它向前飞行时,要使它不断旋转,由于空气具有一定的粘带性,因此当球转动时,空气就与球面发生摩擦,旋转着的球就带动周围的空气层一起转动。若球是沿水平方向向左运动,同时绕平行地面的轴做顺时针方向转动,则空气流相对于球来说除了向右流动外,还被球旋转带动的四周空气环流层随之在顺时针方向转动。根据流体力学伯努利定理,在速度较大一侧的压强比速度较小一侧的压强小,所以球上方的压强小于球下方的压强。球所受空气压力合力上下不等,总合力向上,若球旋转得相当快,使得空气对球的向上合力比球的重量还大,球在前进过程中就受到一个竖直向上的合力,这样球在水平向左的运动过程中,将一面向前、一面向上地做曲线运动,球就向上转弯了。若要使球能左右转弯,只要使球绕垂直轴旋转就行了。看来关键是运动员触球的一刹那的脚法,即不但要使球向前,而且要使球急速旋转起来,不同的旋转方向,球的转向就不同,这需要运动员的刻苦训练,方能练就一套娴熟的脚头功夫,只有经过千锤百炼,才能达到炉火纯青的地步。

自从贝利1966年在伦敦世界杯赛中踢出了第一个“美丽的弧线”后,“香蕉球”便成为越来越多大牌球星们的基本功底和拿手好戏。被誉为“万人迷”和“英格兰圆月弯刀”的贝克汉姆一次次用最优雅的“贝氏弧线”博得世界的喝彩,“金左脚”卡洛斯的“炮打双灯”为足球史留下了一段佳话,而“绿茵拿破仑”普拉蒂尼踢出的“香蕉球”横向飘移量竟达5米之多,使他成了至今无人能挑战的“任意球之王”。“香蕉球”为什么会在飞行中拐弯?当我们把手伸进水中再拿出来,手的表面会粘上一层水。同样,球的表面也附着一层薄薄的空气,当“香蕉球”一边飞行一边自转时,会带动表面的空气一起旋转,其中一侧转动的线速度和球的前进速度相加,使得迎面气流受到较大阻力,另一侧情况则恰恰相反,自转的线速度和前进速度相减。于是带来了球的两侧气流速度不同。根据伯努利原理“流速越快压力越小”。“香蕉球”便受到一个侧向的力,也称“马格纳斯力”,导致了飞行轨迹的弯曲。伸出右手,用食指表示球的飞行方向,蜷曲的三指表示球的旋转方向,与食指水平垂直的拇指则表示“马格纳斯力”的方向。

现在让我们把视线从绿茵场转到乒乓球桌上,这里大展雄风的“弧圈球”其实是另一种弯曲度向下的“香蕉球”。当对方来球下降时,让手中的挥拍速度达到最大值。击球瞬间通过“用手腕拧球”,尽量将球“吸”在胶皮上,使摩擦力大于撞击力。这样打出的急剧上旋球便会产生马格纳斯效应,球的飞行路径即“第一弧线”向下拐弯,弹起后的“第二弧线”则低沉平直,并急剧前冲和迅速下坠,令人难以招架。弧圈型上旋球是日本人中西义治从拉攻技术中分离出来的。20世纪50年代,欧洲削球曾经雄霸世界乒坛,别尔且克、西多等名将的“加转球”号称“只有起重机才能拉得起来”。而日本运动员发明的弧圈型上旋球却在20世纪60年代大破欧洲削球高手组成的联队。经过多年改变和演进,今天的弧圈球已经成为世界乒坛最富攻击力的主流技术。(www.xing528.com)

贝克汉姆的香蕉球

马格纳斯力的影响还突出表现在棒球网球高尔夫球比赛中。球的旋转必然带来飞行轨迹的弯曲,旋转和曲线共存,这大约可以视为球类运动的一个通则。但高尔夫球宁可不要光洁的“面孔”,却选择一张“麻子脸”,让浑身布满500来个小坑,其中还有更多的奥妙。原来高尔夫球在飞行过程中,附着于表面的空气“边界层”会在球的尾部脱离并产生旋涡,形成“低压区”。球的前沿和后沿之间的“压差阻力”严重阻碍球的前进。而相对粗糙的表面能使“边界层”空气更好附着和延迟分离,从而减少压差阻力。此外,以下旋为主的高尔夫球还能因马格纳斯力而带来升力,增加停留在空中的时间。难怪“麻脸”高尔夫球一杆能打出200米开外,而光滑的高尔夫球却只能打出几十米了。

排球却给了我们另一种扑朔迷离的体验,那便是20世纪60年代,著名日本教练大松博文首创的飘球技术,他率领的“东方魔女”曾靠着这一法宝荣登世界冠军宝座。和急速旋转的香蕉球、弧圈球恰恰相反,飘球的特点是完全不旋转。这就需要击球时直线挥臂、骤打突停、让作用力通过球的重心。飘球的飞行轨迹飘晃不定、十分诡异,可偏离正常抛物线轨道达0.5米,并且具有随机性和不可预测性,因此极易造成接球的困难和失误。谈到飘球的机制和原理,我们不妨讲一点别的故事,也许有助于打开思路。高耸的钢制烟囱在大风中会剧烈摆动;圆形截面的输电线会发出尖锐呼啸;发电厂热交换器排管在高速气流中会轰鸣震荡;潜水艇细长的潜望镜筒在波浪中前进时会扭动弯曲而影响观察;圆形桥墩在激流中则会受到严重破坏。著名的美籍匈牙利裔物理学家冯·卡门教授曾经深入研究过这一现象,发现流体绕过柱状物体时,尾流两侧会交替产生成对排列的、旋转方向相反的涡旋,对物体产生交变的横向作用力。这便是著名的“卡门涡旋”原理。三维的排球虽然不同于二维的圆柱体,但尾部形成的“脱体涡流”同样会引起“流固耦合振动”,飘球发生飘晃的原因盖出于此。从另一个角度看,当飘球的速度减小到一个临界值,阻力的突变性增大也会带来球的骤然失速而急剧下坠。

香蕉球、弧圈球、“麻脸”高尔夫和飘球都不过是空气动力学这个神奇的万花筒中展现的一个小小景观。时刻记住我们不是在虚无的真空中,而是在大气的怀抱中运动,体育的精彩中有着物理的原理。

马格纳斯效应

马格纳斯效应是在粘性不可压缩流体中运动的旋转圆柱受到举力的一种现象。这个效应是德国科学家马格纳斯于1852年发现的。在静止粘性流体中等速旋转的圆柱,会带动周围的流体做圆周运动,流体的速度随着到柱面的距离的增大而减小。这样的流动可以用圆心处有一强度的点涡来模拟。足球、排球、网球以及乒乓球等的侧旋球和弧圈球的运动轨迹之所以有那么大的弧度也是起因于马格纳斯效应。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈