随着现代电力系统的发展和能源结构的变化,加快推进储能技术的研发与应用成为世界各国共同的战略性选择。储能技术对解决电力系统的供电压力,改善电力系统稳定性,提供供电质量等方面起着至关重要的作用。
本章综述了各种先进的储能技术,介绍了各种储能技术在国内外的研究应用现状。在各种储能技术中,抽水蓄能和压缩空气储能已经实用化并得到快速发展,这两种储能技术的综合成本低,适合于电网调峰,然而这两种技术对地形有特殊要求。飞轮储能和超导储能的响应时间短,输出功率大,适合于电网调频和电能质量保证,但自身损耗较大并不适合于长时储能,同时在材料技术方面还有待突破。随着微电网及分布式电站的快速发展,化学储能也得到前所未有的发展机遇。钠硫电池是化学储能中最为成熟的大规模先进储能技术,在全球多个国家有超过250个电站应用于削峰填谷、能量管理及可再生能源的电网接入,但由于在工作过程中需要保持高温环境,安全性有待进一步提高。由于锂离子电池能量密度高、储能效率高等优点,近年来随着技术逐步成熟,成本也不断下降,在光伏及风力发电储能方面也开始得到应用,然而大规模的应用还有待技术的突破,成本需要进一步降低,安全可靠性也需要提升。液流电池作为一种新型大型化学储能装置,技术成熟、循环寿命长且放电深度和频率对电池寿命没有影响,非常适合应用于风力发电储能,但是体积较大及结构复杂,且由于开发运用时间短,价格相对较高。超级电容器具有功率密度大,循环寿命长,充放电效率高等优点,但是需要与其他二次电源结合来克服其能量密度低的不足,扩大其在储能中的应用。
目前没有一种储能技术能够同时满足电力系统的各种需求,因此发展储能技术要综合考虑在电网中的作用。对抽水蓄能及压缩空气储能需要对选址充分论证,加快电站建设;对于飞轮储能和超导储能,需要在技术上突破。随着分布式储能电站及可再生能源发电的快速发展,对化学储能装置的需求也得到快速增长。不同储能技术的发展应用要依据在电网中所需的规模等级、设备形态、技术水平和经济成本等多种因素进行综合评价及合理调配,确保储能装置在电网中充分发挥各自优势;同时储能技术要加快朝向长寿命、低成本、高安全性方面快速发展。我们相信,储能技术随着智能电网建设和可再生能源发展的迫切需求,将得到快速的突破和发展,更多的储能技术将不断得到完善并走向市场。
[1] 余耀,孙华,许俊斌,等.压缩空气储能技术综述,装备机械[J].2013,1:69-74.
[2] 陈海生.国际电力储能技术分析,工程热物理纵横[J].2012年,第2期:19-20.
[3] 李雷,杨春,谢晓峰.我国储能产业发展现状、机遇与挑战[J].化工进展,2011,30:748-754.
[4] 刘诗兴,电网储能技术综述[J].中国电力教育,2012,18:145.
[5] DEANE J P,GALLACHOIR B P O,MCKEOGH E J.Techno-economic review of existing and new pumped hydro energy storage plant[J].Renewable and Sustainable Energy Reviews,2010,14:1293-1302.
[6] 骆妮,李建林.储能技术在电力系统中的研究进展[J].电网与清洁能源,2012,2(28):71-79.
[7] http://news.bjx.com.cn/html/20130802/450142.shtml[OL].
[8] 张振有,刘殿海.我国抽水蓄能作用及发展展望[C].2010年中国抽水蓄能电站工程建设文集.
[9] 贾德香,韩净.我国抽水蓄能电站发展与展望[J].科技资讯,2012,33:114.
[10] 王楠.我国抽水蓄能电站发展现状与前景分析[J].电力技术经济,2008,2(20):18.
[11] http://www.chinapower.com.cn/article/1203/art1203418.asp[OL].
[12] SUCCAR S,WILIAMS R H.Compressed air energy storage:Theory,resources,and applications for wind power[R/OL].//http://www.princeton.edu/pei/energy/publication/texts/Succar Wiliams_PEI_CAES_2008April 8.pdf.2008:81.
[13] YUCEKAYS A.The operational economics of compressed air energy storage systems under uncertainty[J].Renewable and sustainable energy reviews,2013,22:298-305.
[14] LU Y W.Performance study on compressed air refrigeration system based on single screw expander[J].Energy,2013,55(15):762-768.
[15] CROTOGINO F.Compressed air storage[M]//Energy autonomy:Storing Renewable Energies.Hannover:Earthscan Publicoctions Ltd,2006.
[16] MACK D R.Something new in power technology[J].Potentials,1993,12:40-42.
[17] http://www.energystorage-journal.com/shownews.asp?id=2215&classid=[DB/OL]
[18] http://www.energystorage-journal.com/shownews.asp?id=2145&classid=[DB/OL]
[19] 刘文毅,杨勇平,张昔国,辛以波.压缩空气蓄能(CAES)电站及其现状和发展趋势[J].山东电力科技,2007,(2):10-14.
[20] BITTCRLY J G.Flywheel technology:past,prescnt,and 21st century project[J].IEEE Acrospacc and Electronic Systems Magazinc,1998,13:13-16.
[21] 张建诚,陈志业.飞轮储能技术在电力系统中的应用[J].电力情报,1997,3:4-7.
[22] TANG X S,LIU W J,ZHOU L,et al.Flywheel array energy storage system[J].Energy Storage Science and Technology,2013,2(3):208-221.
[23] BOUKETTAYA G,KRICHEN L,OUALI A.A comparative study of three different sensorless vector control strategies for a flywheel energy storage system[J].Energy,2010,35(1):132-139.
[24] DAI X J,ZHANG X Z,JIANG X J,et al.Flywheel energy storage technology in Tsinghua University[J].Energy Storage Science and Technology,2012,1(1):64-68.
[25] 程三海,韦忠朝.飞轮储能技术及其应用[J].电机电器技术,2000,6:31-33.
[26] 赵韩,杨志轶,王忠臣.新型高效飞轮储能技术及其研究现状[J].中国机械工程,2002,13 (17):1521-1524.
[27] HAN Y H,PARK B J,JUNG S Y,et al.The improved damping of superconductor bearings for 35kWh superconductorflywheel energy storage system[J].Physica C.2013,485:102-106.
[28] HEBNER R,BENO J,WALLS A.Flywheel batteries come around again[J].IEEE Spectrum,2002,39(4):6-51.
[29] BAI J G,ZHANG X Z,WANG L M.A flywheel energy storage system with active magnetic bearings[J].Energy Procedia,2012,16(B):1124-1128.
[30] TANG S Q.Flywheel Energy Storage Technology and Its Application[M].Wuhan:Huazhong University of Science &Technology Press,2007.
[31] 魏凤春,张恒,蔡红.飞轮储能技术研究[J].洛阳大学学报,2005,20(2):27-30.
[32] LI C,WANG S Y,ZHAO J L.Flywheel based energy storage systems and their engineering applications[J].Energy Storage Science and Technology,2013,2(3):276-28.
[33] ACAMLEY P P,MECROW B C,et al.An integrated flywheel machine energy store for road vechiles[R].IEEE Colloquium on New Topologies for Permanent Magnet Machines,1997,9(90):1-6.
[34] http://www.energystorage-journal.com/index.asp[OL]
[35] http://www.chinasmartgrid.com.cn/[OL]
[36] DAI X J,DENG Z F,LIU G,et al.Review on advanced flywheel energy storage system with large scale[J].Transactions of China Electrotechnical Society,2011,26(7):133-140.
[37] LIU H X,MA R X,ZHANG H.Achievement and application of flywheel energy storage technique[J].Energy Technology,2003,4(1):110-113.
[38] http://www.nbd.com.cn/articles/2010-08-04/341215.html[OL].
[39] LIU H C,JIANG J H.Flywheel energy storage-An upswing technology for energy sustainability[J].Energy and Buildings,2007,39(5):599-604.
[40] YANG L P,HAN Y J,TENG W Q,et al.飞轮储能关键技术及其在风力发电中的应用[J].Chemical and Physical Power Sources,2011,26.
[41] ZHENG R R.物理储能升温[N].China Science Daily,2010.
[42] ONNES H K.Report on the Researches Made in the Leiden Cryogenic Laboratory Between the Third International Congress of Refrigeration[C].Commus Phys Lab Univ Leiden,1911:1226.
[43] 张秀彬,聂晓冬.超导磁储能技术发展的新动向[J].动力工程,1994,14:50-64.李连贵.国外超导蓄能技术发展概况,黑龙江电力技术,1992,14:54-57.
[44] FERRIER M.Stockaged’energiedansunEnroulementSupraconducteur.In:Low Temperature and Electric Power[M].Elmsford(NY)Pergamon Press 1970:425-432.
[45] BOOM R W,PETERSON H A.Superconductive Energy Storage for Power Systems[J].IEEE Trans on Mag.,1972,8(3):701-703.
[46] HASSENZAHL W V.Will Superconducting Magnetic Energy Storage be used on Electric Utility Systems?[J].IEEE Trans on Mag.,1975,11(1):482-488.
[47] 韩羽中,李艳,余江,等,超导电力磁储能系统研究进展(一)超导储能装置[J].电力系统自动化,25(12):63-68.
[48] BOOM R W.Wisconsin Superconductive Energy Storage Project[C].Univ of Wisconsin Pub1,1974-1981:1-4.
[49] BUCKLES W E,HASSENZAHL W V.Superconducting Magnetic Energy Storage[J].IEEE Power Engineering Review,2000,20(5):16-20.
[50] ROGERS J D,BOENIG H J,SCHERMER R I,et al.Operation of the 30MJ SMES System in the Bonneville Power Administration Electrical Grid[J].IEEE Trans on Mag.,1985,21(2):752-755.
[51] 余运佳.超导储能电力应用的新进展[J].低温与超导,1995,23(2):34-38.
[52] IRIE F,TAKEO M,SATO S,et al.A Field Experiment on Power Line Stabilization by a SMES System[J].IEEE Trans on Mag.,1992,28(1):426-429.
[53] AKOPYAN D G,BATAKOV Y P,DEDJURIN A M,et al.Conceptual Design of a 100 MJ Superconducting Magnetic Energy Storage[J].IEEE Trans on Mag.,1992,28(1):398-401.
[54] POTANINA L V,SHIKOV A K,VEDERNIKOV G P,et al.Recent progress of low temperature superconducting materials at Bochvar Institute[J].Physica C,2003,386:390-393.
[55] ZHANG P,CHEN Y J,REN X J,et al.Thermal conductivity measurement of the epoxies and composite material for low temperature superconducting magnet design[J].Cryogenics,2011,51:534-540.
[56] SHIOHARA Y,ENDO A.Crystal growth of bulk high-Tcsuperconducting oxide materials[J].Materials Science and Engineering,1997,R19:1-86.
[57] CHU C W.High Temperature Superconducting Materials:Present Status,Future Challenges,and One Recent Example-the Superconducting Ferromagnet[J].Physica C,2000,341:25-30.
[58] HUANG H,WANG Y,ZHANG P P,et al.Fabrication of Bi-2223high temperature superconducting magnet[J].Physica C,2003,386:194-197.
[59] WEBBER R J,DELMAS J.Operation of YBCO current leads as bias lines to cryocoolermounted 4Ksuperconducting electronics[J].Physics Procedia,2012,36:256-261.
[60] LI S W,LI W,LI G X,et al.Morphology and superconducting properties of photoassisted MOCVD processed YBCO film by variation of sublimation temperature of the Cubased precursor[J].Physica C,2012,478:60-66.
[61] PEDARNIG J D,BODEA M A,STEIGER B,et al.Systematic modification of electrical and superconducting properties of YBCO and nano-patterning of high-Tcsuperconducting thin films by light-ion irradiation[J].Physics Procedia,2012,36:508-513.
[62] HEKMATI A,HOSSEINI M,VAKILIAN M,et al.A novel method of flat YBCO rings development for shield-type superconducting fault current limiters fabrication[J].Physica C,2012,472:39-43.
[63] KUMMER J T,WEBER N.Battery Having a Molten Alkali Metal Anode and a Molten Sulfur Cathode[P].U.S.Patent.3 413 150.Nov.26,1968.
[64] DUNN B,KAMATH H,TARASCON J M.Electrical energy storage for the grid:A battery of choices[J].Science,2011,334(6058):928-935.
[65] BITO A.Overview of the sodium-sulfur battery for the IEEE Stationary Battery Committee[C].Power Engineering Society General Meeting,San Francisco,California,2005:1232-1235.
[66] DUFO-LOPEZ R,BERNAL-AGUSTIN J L,Dominguez-Navarro J A,Generation management using batteries in wind farms:Economical and technical analysis for Spain [J].Energy Policy,2009,37(1):126-139.
[67] WEN Z,HU Y,WU X,et al.Main Challenges for High Performance NAS Battery:Materials and Interfaces[J].Adv.Funct.Mater,2013,23(8):1005-1018.
[68] YANG Z,ZHANG J,KINTNER-MEYER M C W,et al.Electrochemical energy storage for green grid[J].Chem.Rev,2011,111(5),3577-3613.
[69] LIU C,LI F,MA L P,et al.Advanced materials for energy storage[J].Adv.Mater,2010,22(8):E28-E62.
[70] 林祖镶,郭祝崑,孙成文,等.快离子导体—基础、材料、应用[M].第一版,上海:上海科学技术出版社,1981.
[71] 曹佳弟.电动汽车用高功率钠硫电池的新发展[J].电源技术,1996,6,261-266.
[72] 温兆银.钠硫电池及其应用[J].上海节能,2007,2,7-10.
[73] The vendor’s perspective on barriers and issues encountered in U.S.development NGK Insulators Ltd[N/OL].2009.http://www.energy.ca.gov/2009_energypolicy/documents/2009-04-02_workshop/presentations/2_2%20NGK-NAS%20-%20Harold% 20Gotschall.pdf.
[74] NAS batteries[N/OL].http://www.ngk.co.jp/english/products/power/nas/index.html.
[75] Web Page http://www.sgcc.com.cn/ztzl/newzndw/sdsf/10/256776.shtml[OL].
[76] SONG S F,WEN Z Y,ZHANG Q X,et al.Power Sources[C].2010,195,384.
[77] TILLEY A R,WRIGHT M I.Proceedings of the 16th IECEC[C].Atlanta,1981.
[78] HUANG Y,WEN Z Y,YANG J H,et al.Solid State Ionics[C].2011,192,364.
[79] HU Y Y,WEN Z Y,WU X W,et al.Low-cost shape-control synthesis of porous carbon film onβ″-alumina ceramics for Na-based battery application[J].Journal of Power Sources,2012,219(0):1-8.
[80] HU Y Y,WEN Z Y,WU X W,et al.Nickel nanowire network coating to alleviate interfacial polarization for Na-beta battery applications[J].Journal of Power Sources,2013,240:786-795.(www.xing528.com)
[81] LU X,COFFEY G,MEINHARDT K,et al.High power planar sodium-nickel chloride battery[J].ECS Transactions.2010,28(22):7-13.
[82] LU X,KIRBY B W,XU W,et al.,Advanced intermediate-temperature Na-S battery[J].Energy Environ.Sci.,2013,6:299-306.
[83] RYU H,KIM T,KIM K,et al.,Discharge reaction mechanism of room-temperature sodium-sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte[J].Journal of Power Sources,2011,196(11):5186-5190.
[84] WANG J,NULI J Y Y,HOLZE R.Room temperature Na/S batteries with sulfur composite cathode materials[J].Electrochem.Commun,2007,9(1):31-34.
[85] PARK C W,RYU H S,KIM K W,et al.Discharge properties of all-solid sodium-sulfur battery using poly(ethylene oxide)electrolyte[J].Journal of Power Sources,2007,165 (1):450-454.
[86] PARK C W,AHN J H,RYU H S,et al.Room-temperature solid-state sodium∕sulfur battery[J].Electrochem.Solid-State Lett,2006,9(3):A123-A125.
[87] KIM J S,AHN H J,KIM I P,et al.The short-term cycling properties of Na/PVdF/S battery at ambient temperature[J].J.Solid State Electrochem,2008,12(7-8):861-865.
[88] MEGAHED S,SCROSATI,B.Lithium-ion rechargeable batteries[J].Journal of Power Sources,1994,51:79-104.
[89] XU K.Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries[J].Chem.Rev.,2004,104:4303-4417.
[90] 李国欣.新型化学电源技术概论[M].上海:上海科学技术出版社,2007,321.
[91] TARASCON J M,ARMAND M.Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,414,359-367.
[92] SCROSATI B.Recent advances in lithium ion battery materials[J].Electrochimica Acta,2000,45(15-16):2461-2466.
[93] MIZUSHIMA K,JONES P C,WISEMAN P J,et al.LixCoO2(0<x≤1):A new cathode material for batteries of high energy density[J].Materials Research Bulletin,1980,15(6):783-189.
[94] NAGAUARA T,TOZAWA K.Lithium ion rechargable battery[J].Prog.Batt.Solar Cells,1990,9:209.
[95] PLICHTA E,SLANE S,UCHIYAMA M,et al.Improved Li/LixCoO2rechargeable cell [J].J.Electrochem.Soc.,1989,136(7):1865-1869.
[96] GIBBARD H F.High temperature,high pulse power lithium batteries[J].Journal of Power Sources,1989,26:81-89.
[97] KOYAMA Y,TANAKA I,ADACHI H,et al.Crystal and electronic structures of superstructural Li1-x[Co1/3Ni1/3Mn1/3]O2(0≤x≤1)[J].Journal of Power Sources,2003,119-121:644-648.
[98] THACKERAY M M,DAVID W I F,BRUCE P G,et al.Lithium insertion into manganese spinels[J].Mater.Res.Bull.,1983,18(4):461-472.
[99] XIA Y,YOSHI M.Studies on Li-Mn-O spinel system(obtained from melt-impregnation method)as a cathode for 4Vlithium batteries Part IV.High and low temperature performance of LiMn2O4[J].Journal of Power Sources,1997,66(1-2):129-133.
[100] PADHI A K,NANJUNDASWAMY K S,MASQUELIER C,et al.Effect of structure on the Fe3+/Fe2+redox couple in iron phosphates[J].J.Electrochem.Soc.,1997,144 (5):1609-1613.
[101] 史正军,李勇琦.MW级电池储能站在电网中的应用[J].科技风,2010,19:252-254.
[102] TAKAMI N,SATOH A,HARA M,et al.Rechargeable lithium-ion cells using graphitized mesophase-pitch-based carbon fiber anodes[J].J.Electrochem.Soc.,1995,142(8):2564-2571.
[103] SUZUKI S,SHODAI T.Electronic structure and electrochemical properties of electrode material Li7-xMnO4[J].Solid State Ionic,1999,116(1-2):1-9.
[104] GREGORY D H,O’MEARA P M,GORDON A G,et al.Layer ternary transition metal nitrides;synthesis,structure and physical properties[J].J.Alloys.Compd.,2001,317-318(0):237-244.
[105] IDOTA Y,KUBOTA T,MATSUFUJI A,et al.Tin-Based Amorphous Oxide:A High-Capacity Lithium-Ion-Storage Material[J].Science 1997,276:1395-1397.
[106] LI H,HUANG X,CHEN L.Anode based on oxide materials for lithium rechargeable batteries[J].Solid State Ionics,1999,123:189-197.
[107] OHZUKU T,UEDA A.Why transition metal(di)oxides are the most attractive materials for batteries[J].Solid State Ionics,1994,69(3-4):201-211.
[108] KANG Y M,KIM K T,KIM J H,et al.Electrochemical properties of Co3O4,Ni-Co3O4 mixture and Ni-Co3O4composite as anode materials for Li ion secondary batteries[J].Journal of Power Sources,2004,133(2):252-259.
[109] LIU H C,YEN S K.Characterization of electrolytic Co3O4thin films as anodes for lithium-ion batteries[J].Journal of Power Sources,2007,166(2):478-484.
[110] MORALES J,SNCHEZ L,MARTN F,et al.Nanostructured CuO thin film electrodes prepared by spray pyrolysis:a simple method for enhancing the electrochemical performance of CuO in lithium cells[J].Electrochimica Acta,2004,49(26):4589-4597.
[111] TABERNA P L,MITRA S,POIZOT P,et al.High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications[J].Nature Materials,2006,5(7):567-573.
[112] ABRAHAM K M,PASQUARIELL D M,WILLSTAEDT E B.Preparation and characterization of some lithium insertion anodes for lithium batteries[J].J.Electrochem.Soc.,1990,137(3):743-749.
[113] POIZOT P,LARUELLE S,GRUGEON S,et al.Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J].Nature,2000,407:496-499.
[114] OHZUKU T,UEDA A,YAAMOTO N.Zero-strain insertion material of Li(Li1/3Ti5/3)O4for rechargeable lithium cells[J].J.Electroem.Soc,1995,142(5):1431-1436.
[115] BUQA H,HOLZAPFEL M,KRUMEICH F,et al.Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries[J].Journal of Power Sources,2006,161(1):617-622.
[116] KOVALENKO I,ZDYRKO B,MAGASINSKI A,et al.A major constituent od brown algae for use in high-capacity Li-ion batteries[J].Science,2011,334(6052):75-79.
[117] 张华民,储能与液流电池技术[J].储能科学与技术,2012,1(1):58-63.
[118] 张华民,王晓丽,全钒液流电池技术最新研究进展[J].储能科学与技术,2013,2(3):281-288.
[119] 贾志军,宋士强,王保国,液流电池储能技术研究现状与展望[J].储能科学与技术,2012,1 (1):50-57.
[120] 杨霖霖,廖文俊,苏青,王子健,全钒液流电池技术发展现状[J].储能科学与技术.2013,2,(2)140-145.
[121] SUN E,RYCHCIK M,Skyllas-Kazacos M.Investigation of the V(IV)/V(Ⅴ)system for use in positive half-cell of a redox battery[J].Journal of Power Sources,1985,15:85-95.
[122] SHIBATA T,HISADA T,AYAI N.Performance results of redox flow battery system applied to DC micro grid[C]//The International Flow Battery Forum,2012.
[123] 张亚萍,陈艳,周元林,等.全钒氧化还原液流电池隔膜[J].化学进展.2010,22(2/3):384-387.
[124] 李文跃,魏冠杰,刘建国,等.全钒液流电池电极材料及其研究进展[J].储能科学与技术.2013,2,(4):342-348.
[125] 钱鹏,张华民,陈剑,文越华,衣宝廉.全钒液流电池用电极及双极板研究进展[J].能源工程.2007,1,7-11.
[126] HADDADI-ASL V,KAZACOS M,SKYLLAS-KAZACOS M.Conductive carbon polypropylene composite electrodes for vanadium redox flow battery[J].Applied Electrochemisty,1995,25(1):29-33.
[127] SKYLLAS-KAZAOES M,RYCHCIK M.Evaluation of electrode materials for all vanadium redox flow cell[J].Journal of Power Sources,1987,19(1):45-54.
[128] 周林,黄勇,郭珂,等.微电网储能技术研究综述[J].电力系统保护欲控制,2011,39:147-152.
[129] WANG G P,ZHANG L,ZHANG J J.A review of electrode materials for electrochemical supercapacitors[J].Chem.Soc.Rev.,2012,41:797-828.
[130] AHN Y R,PARK C R,JO S M,et al.Enhanced charge-discharge characteristics of RuO2supercapacitors on heat-treated TiO2nanorods[J].Applied Physics Letters.2007,90:122106.
[131] ZHI M J,XIANG C C,LI J T,et al.Nanostructured carbon-metal oxide compositeelectrodes for supercapacitors:a review[J].Nanoscale,2013,5:72-88.
[132] KIM H,POPOV B N.A mathematical model of oxide/carbon composite electrode for supercapacitors[J].Journal of the Electrochemical Society,2003,150(9):A1153-A1160.
[133] 廖曙生.综述各类储能装置的储能技术[J].广东科技,2012,19:109-110.
[134] YANG X W,CHENG C,WANG Y F,et al.Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage[J].Science,2013,341:534-537.
[135] VERONICA AUGUSTYN,COME J R MY,et al.High-rate electrochemical energy storage through Li+intercalation pseudocapacitance[J].Nature Materials,2013,12:518-522.
[136] BAHLOUL A,NESSARK B,et al.Polypyrrole-covered MnO2as electrode material for supercapacitor[J].Journal of Power Sources,2013,240:267-272.
[137] BELLO A,MAKGOPA K,et al.Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications[J].Journal of Materials Science,2013,48:6707-6712.
[138] LIU L F.Porous Co16S16O96nanosheets as a new electrode material for use in supercapacitors[J].Journal of Power Sources,2013,239:24-29.
[139] EDDAHECH A,AYADI M,BRIAT O,et al.Online parameter identification for realtime supercapacitor performance estimation in automotive applications[J].International Journal of Electrical Power &Energy Systems.2013,51:162-167.
[140] 李雷,杨春,谢晓峰.我国储能产业发展现状、机遇与挑战[J].化工进展,2011,30:
748-754.
[141] CONWAY B E.Electrochemical Supercapacitors:Scientific Fundamentals and Technological Applications[M].New York,Kluwer-Plenum,1999.
[142] DREW J.Supercapacitors Can Replace a Backup Battery for Power Ride-Through Applications-Design Note 450.Design Notes,Linear Technology Corporation,2007.
[143] SCHNEUWLY A,GALLAY R.Properties and applications of supercapacitors from the state-of-the-art to future trends[C].Proceeding PCIM 2000.
[144] BURKE A.Ultracapacitors:why,how,and where is the technology[J].Journal of Power Sources,2000,91(1):37-50.
[145] ENDO M,MAEDA T,et al.Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes[J].Journal of the Electrochemical Society,2001,148(8):A910-A914.
[146] ZHENG J P.The limitations of energy density of battery/double-layer capacitor asymmetric cells[J].Journal of the Electrochemical Society,2003,150(4):A484-A492
[147] CONWAY B E,PELL W G.Power limitations of supercapacitor and capacitance distribution operation associated with resistance in porous electrode devices[J].Journal of Power Sources,2002,105(2):169-181.
[148] 刘先曙.氢能的开发和途径[J].科技导报,1995,(5).
[149] 毛宗强.氢能-21世纪的绿色能源[M].北京:化学工业出版社,2005.
[150] 陈进富.制氢技术[J].新能源,1999,21(4):10-14.
[151] 汪家铭.水电解制氢技术进展及应用.广州化工,2005,33(5).
[152] 王庆斌,薛贺来,赵宇,等.工业水电解制氢技术的发展与应用[J].气体分离,2011,(2).
[153] http://www.cnh2.net/case.asp?id=51[OL]
[154] ATHANASSIOU C,PEKRIDIS G,KAKLIDIS N,et al.Hydrogen production in solid electrolyte membrane reactors(SEMRs)[J].International Journal of Hydrogen Energy,2007,32(1):38-54.
[155] STUART P A,UNNO T,KILNER J A,et al.Solid oxide proton conducting steam electrolysers[J].Solid State Ionics 2008,179(21-26):1120-1124.
[156] ARASHI H,NAITO H,MIURA H.Hydrogen production from high-temperature steam electrolysis using solar energy[J].International Journal of Hydrogen Energy 1991,16 (9):603-608.
[157] MAEDA K,DOMEN K.Photocatalytic Water Splitting:Recent Progress and Future Challenges[J].The Journal of Physical Chemistry Letters 2010,1(18):2655-2661.
[158] 李瑛,王林山.燃料电池[M].北京:冶金工业出版社,2002.
[159] CARRETTE L,FRIEDRICH K A,STIMMING U.Fuel Cells—Fundamentals and Applications[J].Fuel Cells,2001,1(1):5-39.
[160] STEELE B C H,HEINZEL A.Materials for fuel-cell technologies[J].Nature 2001,414:345-352.
[161] MINH N Q.Ceramic Fuel Cells[J].Journal of the American Ceramic Society,1993 76 (3):563-588.
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。