首页 理论教育 国际太阳能光伏技术进展全面综述

国际太阳能光伏技术进展全面综述

时间:2023-11-27 理论教育 版权反馈
【摘要】:在本章中,我们分五个方面简要而全面地综述了最近十多年来国际上在新型太阳电池和光伏技术方面的最新进展,由于篇幅限制我们没有涉及中间带隙半导体材料及其在太阳能光伏方面的探索研究[20]。当然,纳米科学和材料科学在太阳电池中的创新应用才刚刚起步,离产业化的要求还有很大距离,但千万不能小看其对未来光伏产业可持续发展的重要性。

国际太阳能光伏技术进展全面综述

在本章中,我们分五个方面简要而全面地综述了最近十多年来国际上在新型太阳电池和光伏技术方面的最新进展,由于篇幅限制我们没有涉及中间带隙半导体材料及其在太阳能光伏方面的探索研究[20]。可以看到,短短三十多年,特别是最近十多年来,太阳能科学已经得到迅猛的发展,我们有理由相信用不了很长时间,太阳能科学一定会成为世界科学技术方面一门非常重要的学科,将为人类可持续发展作出不可估量的贡献。

当然,纳米科学和材料科学在太阳电池中的创新应用才刚刚起步,离产业化的要求还有很大距离,但千万不能小看其对未来光伏产业可持续发展的重要性。虽然我国已经是国际光伏产业大国,但绝不是光伏产业强国。当国际光伏创新研究如火如荼开展之时,我们一定要对我国光伏产业即将面临的严峻局面有清醒的认识。只有迎头赶上,在源头上创新才能实现我国光伏产业强国之梦,引领国际光伏产业的发展。

作者感谢苏未安、黄增光、郭晓枝、熊衍和温超等同志在写作过程中的协助。

参考文献

[1] TANG C W.Two-layer organic photovoltaic cell[J].Appl.Phys.Lett.,1986,48(2):183-185.

[2] GRANSTRM M,PETRITSCH K,ARIAS A C,LUX A,ANDERSSON M R,FRIEND R H.Laminated fabrication of polymeric photovoltaic diodes[J].Nature,1998,395:257-260.

[3] YU G,GAO J,HUMMELEN J C,WUDL F,HEEGER A J.Polymer photovoltaic cells:enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J].Science,1995,270:1789-1791.

[4] GREEN M A,EMERY K,HISHIKAWA Y,WARTA W,DUNLOP E D.Solar cell efficiency tables(version 41)[J].Prog.Photovolt:Res.Appl.2013,21:1-11.

[5] CHEN H-Y,HOU J,ZHANG S,LIANG Y,et al.Polymer solar cells with enhanced open-circuit voltage and efficiency[J].Nature Photonics,2009,3:649-653.

[6] KIM J Y,LEE K,COATES N E,et al.Efficient tandem polymer solar cells fabricated by all-solution processing[J].Science,2007,317:222-225.

[7] KUMAR P,CHAND S.Recent progress and future aspects of organic solar cells[J].Prog.Photovolt:Res.Appl.2012;20:377-415.

[8] DERGAARD R S,HSEL M,ANGMO D,et al.Roll-to-roll fabrication of polymer solar [J].Mater.Today,2012,15(1-2):36-49.

[9] SEMONIN O E,LUTHER J M,BEARD M C.Quantum dots for next-generation photovoltaics[J].Mater.Today,2012,15(11):508-515.

[10] O’REGAN B,GRTZEL M.A low-cost,high-efficiency solar cell based on dyesensitized colloidal TiO2films[J].Nature,1991,335:737-740.

[11] GRTZEL M.Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells[J].J.Photochem.Photobiol.A,2004,164:3-14.

[12] YELLA A,LEE H W,GRTZEL M,et al.Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12percent efficiency[J].Science,2011,334:629-634.

[13] ITO S,HA N L C,GRTZEL M,et al.High-efficiency(7.2%)flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2photoanode[J].Chem.Commun.,2006 38:4004-4006.

[14] MURATA Y,TAKAO J,ADACHI M,et al.Formation of 2DTiO2nanowires with single crystal and application for dye-sensitized solar cell[C].Abs.400,205th Meeting,2004.

[15] LAW M,GREENE L,YANG P,et al.Nanowire dye-sensitized solar cells[J].Nat.Mater.,2005,4:455-459.

[16] ZHANG G,BALA H,WANG P,et al.High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binaryπ-conjugated spacer[J].Chem.Commun.,2009,16:2198-2200.

[17] LI D M,WANG M Y,WU Z J,et al.Application of a new cyclic guanidinium ionic liquid on dye-sensitized solar cells(DSCs)[J].Langmuir,2009,25:4808.

[18] KLIMOV V I.Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals[J].Annu.Rev.Phys.Chem.,2007,58:635-73.

[19] WANG Y,HERRON N.Nanometer-sized semiconductor clusters:materials synthesis,quantum size effects,and photophysical properties[J].J.Phys.Chem.,1991,95(2):525-532.

[20] LUQUE A,MATRI A.Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels[J].Phys.Rev.Lett.,1997,78:5014-5017.

[21] NOZIK A J.Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots[J].Annu.Rev.Phys.Chem.,2001,52:193-231.

[22] XIA J,MASAKI N,YANAGIDA S,et al.Sputtered Nb2O5as a novel blocking layer at conducting glass/TiO2interfaces in dye-sensitized ionic liquid solar cells[J].J.Phys.Chem.C,2007,111(22):8092-8097.

[23] LEE S,NOH J H,HONG K S,et al.Nb-doped TiO2:a new compact layer material for TiO2dye-sensitized solar cells[J].J.Phys.Chem.C,2009,113(16):6878-6882.

[24] TORNOW J,SCHWARZBURG K.Transient electrical response of dye-sensitized ZnO nanorod solar cells[J].J.Phys.Chem.C,2007,111(24):8692-8698.

[25] GERISCHER H.Neglected problems in the pH dependence of the flatband potential of semiconducting oxides and semiconductors covered with oxide layers[J].Electrochim.Acta,1989,1005-1009.

[26] CHEN P,YUM J H,GRTZEL M,et al.High open-circuit voltage solid-state dyesensitized solar cells with organic dye[J].Nano Lett.,2009,9(6):2487-2492.

[27] GUR I,FROMER N A,ALIVISATOS A P,et al.Air-stable all-inorganic nanocrystal solar cells processed from solution[J].Science,2005,310(5747):462-465.

[28] WU Y,WADIA C,ALIVISATOS A P,et al.Synthesis and photovoltaic application of copper(I)sulfide nanocrystals[J].Nano Lett.,2008,8(8):2551-2555.

[29] GREEN M A,EMERY K,WARTA W,et al.Solar cell efficiency tables[J].Prog.Photovoltaics,2012,20(1):12-20.

[30] PATTANTYUS-ABRAHAM A G,KRAMER I J,SARGENT E H,et al.Depletedheterojunction colloidal quantum dot solar cells[J].ACS Nano,2010,4(6):3374-3380.

[31] LUTHER J M,LAW M,NOZIK A J,et al.Schottky solar cells based on colloidal nanocrystal films[J].Nano Lett.,2008,8(10):3488-3492.

[32] MA W,LUTHER J M,ALIVISATOS A P,et al.Photovoltaic devices employing ternary PbSxSe1-xnanocrystals[J].Nano Lett.,2009,9(4):1699-1703.

[33] CHOI J J,LIM Y,HANRATH T,et al.PbSe nanocrystal excitonic solar cells[J].Nano Lett.,2009,9(11):3749-3755.

[34] MA W,SWISHER S L,ALIVISATOS A P,et al.Photovoltaic performance of ultrasmall PbSe quantum dots[J].ACS Nano,2011,5(10):8140-8147.

[35] TANG J,SARGENT E H.Infrared colloidal quantum dots for photovoltaics:fundamentals and recent progress[J].Adv.Mater.,2011,23(1):12-29.

[36] TANG J,KEMP K W,SARGENT E H,et al.Colloidal-quantum-dot photovoltaics using atomic-ligand passivation[J].Nat.Mater.,2011,10:765-771.

[37] LEE H J,YUM J H,NAZEERUDDIN M K,et al.CdSe quantum dot-sensitized solar cells exceeding efficiency 1%at full-sun intensity[J].J.Phys.Chem.C,2008,112 (30):11600-11608.

[38] TACHIBANA Y,AKIYAMA H Y,KUWABATA S,et al.CdS quantum dots sensitized TiO2sandwich type photoelectrochemical solar cells[J].Chem.Lett.,2007,36(1):88-89.

[39] ZABAN A,MICIC O I,NOZIK A J,et al.Photosensitization of nanoporous TiO2 electrodes with InP quantum dots[J].Langmuir,1998,14(12):3153-3156.

[40] HODES G,ALBU-YARON A,MOTISUKE P,et al.Three-dimensional quantum-size effect in chemically deposited cadmium selenide films[J].Phys.Rev.B.,1987,36:4215-4221.

[41] KONGKANAND A,TVRDY K,TAKECHI K,et al.Quantum dot solar cells:tuning photoresponse through size and shape control of CdSe-TiO2architecture[J].J.Am.Chem.Soc.,2008,130:4007-4015.

[42] ROBEL I,KUNO M,KAMAT P V.Size-dependent electron injection from excited CdSe quantum dots into TiO2nanoparticles[J].J.Am.Chem.Soc.,2007,129:166-170.

[43] SUN W T,YU Y,PENG L M.Highly efficient CdS quantum dots sensitized solar cells based on modified polysulfied electrolyte[J].J.Am.Chem.Soc.,2008,130:424-429.

[44] NIITSOO O,SARKAR S K,PEJOUX C,et al.Chemical bath deposited CdS/CdSesensitized porous TiO2solar cells[J].J.Photochem.Photobiol.A,2006,181:306-313.

[45] LEE Y L,LO Y S.Highly efficient quantum-dot-sensitized solar cell based on cosensitization of CdS/CdSe[J].Adv.Fun.Mater.,2009,19:604-609.

[46] KOHTANIA S,KUDOB A,SAKATAB T.Spectral sensitization of a TiO2 semiconductor electrode by CdS microcrystals and its photoelectrochemical properties[J].Chem.Phys.Lett.,1993,206:166-170.

[47] DOR S,DITTRICH T,ZAZAN A,et al.Postpressing dependence of the effective electron diffusion coefficient in electrophoretically prepared nanoporous ZnO and TiO2 films[J].J.Mater.Res.,2008,23:975-980.

[48] FENG X,SHANKAR K,GRIMES C A,et al.Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass:synthesis details and applications[J].Nano Lett.,2008,8(11):3781-3786.

[49] KOJIMA A,TESHIMA K,MIYASAKA T,et al.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J].J.Am.Chem.Soc.,2009,131(17):6050-6051.

[50] LEE H,WANG M,NAZEERUDDIN M K,et al.Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process [J].Nano Lett.,2009,9(12):4221-4227.

[51] GORER S,HODES G.Quantum size effects in the study of chemical solution deposition mechanisms of semiconductor films[J].J.Phys.Chem.,1994,98(20):5338-5346.

[52] CHEN J,SONG J L,LIU R S,et al.An oleic acid-capped CdSe quantum-dot sensitized solar cell[J].Appl.Phys.Lett.,2009,94:153115.

[53] WIJAYANTHA K G U,PETER L M,OTLEY L C.Fabrication of CdS quantum dot sensitized solar cells via a pressing route[J].Sol.Energy Mater.Sol.Cells,2004,83 (4):363-369.

[54] FANG H,LI X D,SONG S,et al.Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications[J].Nanotechnol.,2008,19:255703.

[55] PERRAUD S,PONCET S,NOL S,et al.Full process for integrating silicon nanowire arrays into solar cells[J].Sol.Energ.Mat.&Sol.Cell.,2009,93:1568-1571.

[56] SIVAKOV V,ANDRG,GAWLIK A,et al.Silicon nanowire-based solar cells on glass:synthesis,optical properties,and cell parameters[J].Nano Lett.,2009,9(4):1549-1554.

[57] KAYES B M,ATWATER H A,LEWIS N S,Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells[J].J.Appl.Phys.,2005,97:114302.

[58] KELZENBERG M,BOETTCHER S,PETYKIEWICZ J,et al.Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications[J].Nature Materials,2010,9:239-244.

[59] GARNETT E C,YANG P,Silicon Nanowire radial p-n junction solar cells[J].J.Am.Chem.Soc.,2008,130(29):9224-9225.

[60] GARNETT E,YANG P,Light trapping in silicon nanowire solar cells[J].Nano Lett.,2010,10:1082-1087.

[61] NAUGHTON M J,KEMPA K,REN Z F,et al.Efficient nanocoax-based solar cells[J].Phys.Stat.Soli.RRL,2010,4:181-183.(www.xing528.com)

[62] OH J,YUAN H C,BRANZ H M,An 18.2%efficiency black-silicon solar cell achieved through control of carrier recombination in nanostructures[J].Nature Nanotechnol.,2012,7:743-748.

[63] LIN X X,HUA X,HUANG Z G,SHEN W Z,Realization of high performance silicon nanowires based solar cells in large size[J].Nanotechnol.,2013,24:235402.

[64] TIAN B Z,ZHENG X L,KEMPA T J,et al.Coaxial silicon nanowires as solar cells and nanoelectronic power sources[J].Nature,2007,449:885-890.

[65] KEMPA T J,CAHOON J F,KIM S K,et al.Coaxial multishell nanowires with highquality electronic interfaces and tunable optical cavities for ultrathin photovoltaics[J].Proc.Natl.Acad.Sci.U.S.A.,2012,109(48):1407-1412.

[66] KEMPA T J,DAY R W,KIM S K,et al.Semiconductor nanowires:aplatform for exploring limits and concepts for nano-enabled solar cells[J].Energ.Envir.Science,2013,6:719-733.

[67] THOMOAS J K,BOZHI T,DONG R K,et al.Single and tandem axial p-i-n nanowire photovoltaic devices[J].Nano Lett.,2008,8(10):3456-3460.

[68] VEPˇREK S,MAREˇCEK V.The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport[J].Soli.Stat.Elec.,1968,11:683-684.

[69] ZHANG R,CHEN X Y,ZHANG K,et al.Photocurrent response of hydrogenated nanocrystalline silicon thin films[J].J.Appl.Phys.,2006,100:104310.

[70] SRIRAMAN S,AGARWAL S,AYDIL E S,MAROUDAS D.Mechanism of hydrogeninduced crystallization of amorphous silicon[J].Nature,2002,418:62.

[71] YAN B J,YUE G Z,OWENS J M,et al.Light-induced metastability in hydrogenated nanocrystalline silicon solar cells[J].Appl.Phys.Lett.,2004,85:1925-1927.

[72] RATH J K.Low temperature polycrystalline silicon:a review on deposition,physical properties and solar cell applications[J].Sol.Energ.Mater.Sol.Cell.,2003,76:431-487.

[73] HAZRA S,RAY S.Nanocrystalline silicon as intrinsic layer in thin film solar cells[J].Soli.Stat.Comm.,1998,109:125-128.

[74] YUE G Z,SIVEC L,OWENS J M,YAN B J,YANG J,GUHA S.Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells[J].Appl. Phys.Lett.,2009,95:263501.

[75] SODERSTROM T,HAUG F J,TERRAZZONI-DAUDRIX V,NIQUILLE X,PYTHON M,BALLIF C.N/I buffer layer for substrate microcrystalline thin film silicon solar cell[J].J.Appl.Phys.,2008,104:104505.

[76] YUE G,YAN B J,TEPLIN C,YANG J,GUHA S.Optimization and characterization of i/p buffer layer in hydrogenated nanocrystalline silicon solar cells[J].J.Non-Crys.Soli.,2008 354:2440-2444.

[77] YAN B,YUE G,SIVEC L,YANG J,GUHA S,JIANG C S.Innovative dual function nc-SiOx:H layer leading to a>16%efficient multi-junction thin-film silicon solar cell[J].Appl.Phys.Lett.,2011,99:113512.

[78] YAMAMOTO K,NAKAJIMA A,YOSHIMI M,SAWADA T,FUKUDA S,SUEZAKI T,ICHIKAWA M,KOI Y,GOTO M,TAKATA H,SASAKI T,TAWADA Y.Novel hybrid thin film silicon solar cell and module[C].Procee.the 3rd World Conf.,2003,2783:2789-2792.

[79] BALLIF C,BARRAUD L,BATTAGLIA C,et al.Novel materials and superstrates for high-efficiency micromorph solar cells[C].Procee.the 26th EU-PVSEC,2011,2384-2391.

[80] ATWATER H A,POLMAN A.Plasmonics for improved photovoltaic devices[J].Nature Mater.,2010,9:205-213.

[81] FERRY V E,MUNDAY J N.,ATWATER H A.Design considerations for plasmonic photovoltaics[J].Adv.Mater.,2010,22:4794-4808.

[82] PILLAI S,GREEN M A.Plasmonics for photovoltaic applications[J].Sol.Energ.Mate.Sol.Cell.,2010,94:1481-1486.

[83] GAN Q,BARTOLI F J,KAFA Z H.Plasmonic-enhanced organic photovoltaics:breaking the 10%efficiency barrier[J].Adv.Mater.,2013,25:2385-2396.

[84] STUART H R,HALL D G.Absorption enhancement in silicon-on-insulator waveguides using metal island films[J].Appl.Phys.Lett.,1996,69:2327-2329.

[85] SCHAADT D M,FENG B,YU E T.Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles[J].Appl.Phys.Lett.,2005,86:063106.

[86] WANG Y,LIU Y P,LIANG H L,et al.Broadband antireflection on the silicon surface realized by Ag nanoparticle-patterned black silicon[J].Phys.Chem.Chem.Phys.,2013,15(7):2345-2350.

[87] DERKACS D,LIM S H,MATHEU P,MAR W,et al.Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles[J].Appl.Phys.Lett.,2006,89:093103.

[88] MATHEU P,LIM S H,DERKACS D,et al.Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices[J].Appl.Phys.Lett.,2008,93:113108.

[89] HO C-I,YEH D-J,SU V-C,et al.Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells[J].J.Appl.Phys.,2012,112:023113.

[90] PILLAI S,CATCHPOLE K R,TRUPKE T,GREEN M A.Surface plasmon enhanced silicon solar cells[J].J.Appl.Phys.,2007,101:093105.

[91] DERKACS D,et al.Nanoparticle-induced light scattering for improved performance of quantum-well solar cells[J].Appl.Phys.Lett.,2008,93:091107.

[92] NAKAYAMA K,TANABE K,ATWATER H A.Plasmonic nanoparticle enhanced light absorption in GaAs solar cells[J].Appl.Phys.Lett.,2008,93:121904.

[93] CATCHPOLE K R,POLMAN A.Design principles for particle plasmon enhanced solar cells[J].Appl.Phys.Lett.,2008,93:191113.

[94] CATCHPOLE K R,POLMAN A.Plasmonic solar cells[J].Opt.Exp.,2008,16:21793-21800.

[95] PALA R A,WHITE J,BARNARD E,LIU J,BRONGERSMA M L.Design of plasmonic thin-film solar cells with broadband absorption enhancements[J].Adv.Mater.,2009,21:3504-3509.

[96] SAMMITO D,ZILLIO P,ZACCO G,et al.Light trapping properties of metallic gratings on wafer-based silicon solar cells[J].Nano Energ.,2013,2(3):337-343.

[97] KULKARNI A P,NOONE K M,MUNECHIKA K,et al.Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms[J].Nano Lett.,2010,10:1501-1505.

[98] WU J-L,CHEN F-C,HSIAO Y-S,et al.Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells[J].ACS Nano,2011,5(2):959-967.

[99] WANG C,CHOY W,DUAN C,et al.Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells[J].J.Mater.Chem.,2012,22:1206-1211.

[100] SALVADOR M,MACLEOD B A,HESS A,et al.Electron accumulation on metal nanoparticles in plasmon-enhanced organic solar cells[J].ACS Nano,2012,6(11):10024-10032.

[101] JEONG N C,PRASITTICHAI C,HUPP J T.Photocurrent enhancement by surface plasmon resonance of silver nanoparticles in highly porous dye-sensitized solar cells[J].Langmuir,2011,27:14609-14614.

[102] DANG X,QI J,KLUG M T,et al.Tunable localized surface plasmon-enabled broadband light-harvesting enhancement for high-efficiency panchromatic dye-sensitized solar cells [J].Nano Lett.2013,13:637-642.

[103] JUNG M-H KANG M G.Enhanced photo-conversion efficiency of CdSe-ZnS core-shell quantum dots with Au nanoparticles on TiO2electrodes[J].J.Mater.Chem.,2011,21:2694-2700.

[104] KONDA R B,et al.Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes[J].Appl.Phys.Lett.,2007,91:191111.

[105] HAGGLUND C,ZACH M,PETERSSON G,KASEMO B.Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons[J].Appl.Phys.Lett.,2008,92:053110.

[106] KIRKENGENA M,BERGLI J,GALPERIN Y M.Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles[J].J.Appl.Phys.,2007,102:093713.

[107] BERINI P.Plasmon-polariton waves guided by thin lossy metal films of finite width:bound modes of symmetric structures[J].Phys.Rev.B,2000,61:10484-10503.

[108] BERINI P.Plasmon-polariton waves guided by thin lossy metal films of finite width:bound modes of asymmetric structures[J].Phys.Rev.B,2001,63:125417.

[109] DIONNE J A,SWEATLOCK L,ATWATER H A,POLMAN A.Planar plasmon metal waveguides:frequency-dependent dispersion,propagation,localization,and loss beyond the free electron model[J].Phys.Rev.B,2005,72:075405.

[110] FERRY V,et al.Improved red-response in thin film a-Si:H solar cells with nanostructured plasmonic back reflectors[J].Appl.Phys.Lett.,2009,95:183503.

[111] PAETZOLD U W,MOULIN E,PIETERS B E,et al.Optical simulations of microcrystalline silicon solar cells applying plasmonic reflection grating back contacts[J].J.Photon.Energy.,2012,2(1):027002.

[112] CHEN P,ZHONG Y,LIU H.Role of surface plasmon polaritons and photonic modes in light absorption by thin-film solar cells patterned with metallic nanogratings[J].Opt.Lett.,2013,38(4):573-575.

[113] KANG M-G,XU T,PARK H J,et al.Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes[J].Adv.Mater.,2010,22:4378-4383.

[114] LI X H,SHA W E I,CHOY W C H,et al.Efficient inverted polymer solar cells with directly patterned active layer and silver back grating[J].J.Phys.Chem.C,2012,116:7200-7206.

[115] BECK F J,POLMAN A,CATCHPOLE K R.Tunable light trapping for solar cells using localized surface plasmons[J].J.Appl.Phys.,2009,105:114310.

[116] VERSCHUUREN M A,VAN SPRANG H A.3Dphotonic structures by sol-gel imprint lithography[J].Mater.Res.Soc.Symp.Proc.,2007,1002:N03-05.

[117] BEARD M C,ELLINGSON R J.Multiple exciton generation in semiconductor nanocrystals:toward efficient solar energy conversion[J].Laser &Phot.Rev.,2008,2:377-399.

[118] NOZIK A J,Quantum dot solar cells[J].Physica E,2002,14:115-120.

[119] SCHALLER R D,KLIMOV V I.High efficiency carrier multiplication in PbSe nanocrystals:implications for solar energy conversion[J].Phys.Rev.Lett.,2004,92:186601.

[120] SUKHOVATKIN V,HINDS S,BRZOZOWSKI L,et al.Colloidal quantum-dot photodetectors exploiting multiexciton generation[J].Science,2009,324:1542-1544.

[121] GABOR N M,ZHONG Z,BOSNICK K,et al.Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes[J].Science,2009,325:1367-1371.

[122] SU W A,SHEN W Z.A statistical understanding of multiple exciton generation in PbSe semiconductor nanostructures[J].Soli.Stat.Comm.,2012,152:789-801.

[123] SAMBUR J B,NOVET T,PARKINSON B A,Multiple exciton collection in a sensitized photovoltaic system[J].Science,2010,330(6000):63-66.

[124] SEMONIN O E,LUTHER J M,CHOI S,et al.Peak external photocurrent quantum efficiency exceeding 100%via MEG in a quantum dot solar cell[J].Science,2011,334 (6062):1530-1533.

[125] ZHANG R,CHEN X Y,LU J J,et al.Photocurrent of hydrogenated nanocrystalline silicon thin film/crystalline silicon heterostructure[J].J.Appl.Phys.,2007,102:123708.

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈