首页 理论教育 太阳能光伏技术中的缺陷检测及应用方法简介

太阳能光伏技术中的缺陷检测及应用方法简介

时间:2023-11-27 理论教育 版权反馈
【摘要】:缺陷检测小节介绍了生产中易导致太阳电池缺陷的工艺,分别介绍了四种检测太阳电池缺陷的方法,即超声波共振扫描,接触电阻扫描,光致发光方法,电致发光方法,非接触的红外响应探测技术实用性较强,其探测机制是利用半导体的发光原理,使用红外设备探测电池或组件表面的在光激发或电激发产生发光强度,形成图像并分析之,来判断缺陷种类和位置,因此被广泛应用。

太阳能光伏技术中的缺陷检测及应用方法简介

本章叙述了光伏检测技术,介绍了测试原理,同时展示了部分检测仪器。

I-V特性检测核心问题是准确性问题,为了实现准确的太阳电池检测,需要准确模拟标准测试条件(SRC),但模拟器不可能完全理想模拟,因此本章介绍模拟器的不均匀度光谱不匹配度对测试准确性的影响,准确测试的一个关键环节是标准电池,本章介绍了标准的标定方法,包括空间AM0和AM1.5条件下的标定;光伏发电量的测量又是另一个重要问题,本章介绍了光伏系统和组件在实际工作条件下的性能评定方法,包括基于峰值功率和基于能量的性能评定方法。

缺陷检测小节介绍了生产中易导致太阳电池缺陷的工艺,分别介绍了四种检测太阳电池缺陷的方法,即超声波共振扫描,接触电阻扫描,光致发光方法,电致发光方法,非接触的红外响应探测技术实用性较强,其探测机制是利用半导体的发光原理,使用红外设备探测电池或组件表面的在光激发或电激发产生发光强度,形成图像并分析之,来判断缺陷种类和位置,因此被广泛应用。

量子效率测试小节给出了量子效率的定义,与光谱响应之间的关系,介绍了基于滤光片的测试系统和基于光栅单色仪的测试系统。

少子寿命测试分析小节给出了少子寿命的定义,介绍了光电导衰减法、准稳态光电导衰减法和微波反射光电导衰减法的测试原理和关键测试技术。

本项工作得到上海太阳能学会的支持,同时感谢上海交通大学硕士刘峰、万松、肖娇、肖晨江、墨恺、彭小静、郭泽、曹建明、杜丽芳、张译文、葛彬彬以及柳晓辉博士等做出的突出研究工作,特别感谢上海赫爽太阳能科技有限公司张晓蕾提供技术信息。

参考文献

[1] ASTM standard G 159:Standard tables for references solar spectral irradiance at air mass 1.5:direct normal and hemispherical for a 37℃tilted surface[S].ASTM Annual Book of Standards,Vol.14.04,ASTM International,West Conshohocken,PA,2002.

[2] IEC standard 60904-3:Measurement principles for terrestrial photovoltaic(PV)solar devices with reference spectral irradiance data[S].Photovoltaic Devices,International Electro-technical Commission,Geneva,Switzerland,1998.

[3] MYERS D R,REDA I,WILCOX S etc.Optical radiation measurements for photovoltaic applications:instrumentation uncertainty and performance[C].Organic Photovoltaics V,Proc.of SPIE,2004,(5520):142-153.

[4] IEC standard 60904-9:Solar simulator performance requirements[S].Photovoltaic Devices.International Electro-technical Commission,Switzerland,2007.

[5] 万松,徐林,刘锋,胡军,一种适用于太阳模拟器的太阳电池串联电阻提取算法[J].太阳能学报,2013.

[6] CORLESS R M,CONNET G H,HARE D E G,et al.Lambert’s W function in maple [J].Maple Technical Newsletter.1993,9:12-22.

[7] 彭小静,徐林,刘锋,光谱及太阳电池各参数与填充因子之关系[J].太阳能学报,2009,30 (7):878-882.

[8] KOSTER L J A,MIHAILETCHI V D.Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells[J].Applied Physics Letters,2005,86:123509.1-123509.3.

[9] HEGEDUS S S,SHAFARMAN W N.Thin-Film Solar Cells:Device Measurements and Analysis[J].Progress in Photovoltaics:Research and Applications Progress Photovoltaic:Res.Appl.2004.(12):155-176.

[10] 高桥清,滨川圭弘,俊川昭雄.太阳光发电[M].日本:森北出版株式社会.北京:新时代出版社.1987:144-147.

[11] WENNERBERG J,THIN FILM TECHNOLOGY[C].2th International Photovoltaic Industry Workshop on Thin films,2006,Luxembourg:office for official publications of the European Communities,2007:55-56.

[12] SCHONECKER A,BIICHER K.Influence of non-uniform illumination on spectral response and efficiency of large area solar cell[J].PVSC,IEEE,1991(1):203-208.

[13] 杨虎,崔容强,徐林,非标条件下太阳电池短路电流向标准条件下的转化[J].太阳能学报,2003,24(5):663-667.

[14] JENKINS P,et al.1997Uncertainty analysis of high altitude aircraft air mass zero solar cell calibration[C].Proc.26th IEEE Photovoltaic Specialists Conf.,Anaheim,pp.857-860.

[15] SUPPA E G.Space Calibration of Solar Cells.Results of 2shuttle flight missions[C].Proc.17th IEEE Photovoltaic Specialists Conf.,Orlando,1984:301-305.

[16] LANDIS G A,et al.Calibration and measurement of solar cells on the international space station:A new test facility[C].Proc.36th Intersociety Energy Conversion Conf.,2001:229-231.

[17] DAVIES M A H,GOODBODY C.The calibration of solar cells in terrestrial sunlight[C].Proc.2nd European Space Power Conf.,ESA SP-320,1991:583-587.

[18] GARCIA-CERVANTES L,et al.Ground level sunlight calibration of space solar cells[C].Proc.5th European Space Power Conf.,ESA SP-416,1998:615-620.

[19] GARCIA L,et al.Uncertainty analysis for ground level sunlight calibration of space solar cells at Tenerife[C].Proc.17th European Photovoltaic Solar Energy Conf.,Munich,2001:2259-2262

[20] YANG Y,et al.Calibration of AM0reference solar cells using direct normal terrestrial sunlight[C].Proc.9th Asia/Pacific Photovoltaic Science and Engineering Conf.,1996.

[21] KAWASAKI O,et al.Study of Solar simulator method and round robin calibration plan of primary standard solar cell for space use[C].Proc.1st World Conf.on Photovoltaic Energy Conversion,Hawaii,1994.

[22] METZDORF J,et al.Absolute indoor calibration of large area solar cells[C].Proc.5th European Symp.On Photovoltaic Generators in Space,ESA SP-267,1986:397-402

[23] ASTM E973M-96:Test method for determination of the spectral mismatch parameter between a Photovoltaic device and a Photovoltaic reference cell[S].

[24] GRAS A,et al.Terrestrial secondary calibration analysis[C].Proc.16th European Space Power Conf.,2000:1011-1014.

[25] JENNINGS C.Outdoor versus rated photovoltaic module performance[C].Proc.19th IEEE Photovoltaic Specialist Conf.,pp.1257-1260.

[26] HESTER S,TOWNSEND T,CLEMENTS W,STOLTE W.PV USA:Lessons learned from startup and early operation[C].Proc.21st IEEE Photovoltaic Specialist Conf.,1990:937-943.

[27] GAY C,RUMBURG J,WILSON J.‘AMPM’all-day performance measurements[C].Proc.16th IEEE Photovoltaic Specialist Conf.,pp.1041-1046.

[28] GIANOLI-ROSI E,KREBS K.Energy rating of PV modules by outdoor response analysis [C].Proc.8th Euro.Conf.Photovoltaic Solar Energy Conversion,1988:509-514.

[29] KROPOSKI B,et al.Photovoltaic module energy rating methodology development[C].Proc.25th IEEE Photovoltaic Specialist Conf.,1996:1311-1314.

[30] KROPOSKI B,et al.Comparison of module performance characterization methods[C].Proc.28th IEEE Photovoltaic Specialist Conf.,2000:1407-1411.(www.xing528.com)

[31] WHITAKER C,et al.Application and validation of a new PV performance characterization method[C].Proc.26th IEEE Photovoltaic Specialist Conf.,1997:1253-1256.

[32] MARION B,et al.Validation of a photovoltaic Module Energy Ratings Procedure at NREL [R].NREL Tech.Report NREL/TP-520-26909(Aug.1991)

[33] NANN S,RIORDAN C.Solar spectral irradiance under clear and cloudy skies:measurements and a semi-empirical model[J].J.Applied Meteorology,1991,30:447-462.

[34] RAICU A,HEIDLER K,KLEISS G,et al.Realistic reporting conditions efficiency:new algorithm for the assessment of solar cells[C].Proc.11th Euro.Conf.Photovoltaic Solar Energy Conversion,1992:1323-1326.

[35] RAICU A,HEIDLER K,KLEISS G,et al.Annual and seasonal energy rating of mono-Si,a-Si and GaAs test cells for the USA by the RRC method[C].Proc.22nd IEEE photovoltaic Specialist Conf.,1991:744-749.

[36] BUCHER K.Do we need site-dependent and climate-dependent module rating[C].Proc.23rd IEEE Photovoltaic Specialist Conf.,1993:1056-1062.

[37] GREEN M.Solar Cells Operating Principles,Technology and System Application[M].University of New South Wales,Kensington,Australia,1992.

[38] EMERY K,et al.Record high 18.6%efficient solar cell on HEM multi-crystalline material [C].Proc.25th IEEE Photovoltaic Specialist Conf.,1996:741-744.

[39] OSTERWALD C,GLATFELTER T,BURDICK J.Comparison of the temperature coefficients of the basic I-V parameters for various types of solar cells[C].Proc.19th IEEE Photovoltaic Specialist Conf.,1987:188-193.

[40] KAMEDA M,et al.Efficiency evaluation of a-Si and c-Si solar cells for outdoor use[C].Proc.25th IEEE Photovoltaic Specialist Conf.,1996:1049-1052.

[41] HISHIKAWA Y,OKAMOTO S.Dependence of the I-V characteristics of amorphous silicon solar cells on illumination intensity and temperature[J].Sol.Energy Mater.Sol.Cell 33,1994:157-168.

[42] SANDSTROM J.A Method for Predicting Solar Cell Current Versus Voltage Characteristics as a Function of Solar Intensity and Cell Temperature[R].JPL Tech.Report TR 32-1142,Jet Propulsion Laboratory,Pasadena,CA,USA(July 1967).

[43] STANDARD IEC 60891,Procedure for Temperature and Irradiance Corrections to Measured I-V Characteristics of Crystalline Silicon Photovoltaic Devices[S].International Electrotechnical Commission,Geneva,Switzerland.

[44] KING D,KRATOCHVIL J,BOYSON W,et al.Field Experience with a New Performance Characterization Procedure for Photovoltaic Arrays[C].Proc.2nd World Conf.Photovoltaic Solar Energy Conversion,1998:1947-1952.

[45] KASTEN F,YOUNG A.Revised optical air mass tables and approximation formula[J].Appl.Opt.1989,28:4735-4738.

[46] HISHIKAWA Y,IMURA Y,OSHIRO T.Irradiance-dependence and translation of the IV characteristics of crystalline silicon solar cells[C].Proc.28th IEEE photovoltaic specialists conference,2000:1464-1467.

[47] OSTAPENKO S,DALLAS W,HESS D,et al.Crack detection and analyses using resonance ultrasonic vibrations in crystalline silicon wafers[R].Photovoltaic energy conversion,Conference record of the 2006IEEE 4th world conference on volume1,2006:920-923.

[48] van DER HEIDEA A S H,BULTMAN J H,HOOMSTRA J,et al.Optimizing the front side metallization process using the corescan[R].Conference record of the twenty-ninth IEEE photovoltaic specialists conference,2002:340-343.

[49] TRUPKE T,BARDOS R A.Progress with luminescence imaging for the characterization of silicon wafers and solar cells[R].22nd European Photovoltaic Solar Energy Conference,2007.

[50] BOTHE K,POHL P,SCHMIDT J,et al.Electroluminescent-effect imaging as an in-line characterization tool for solar cell production[R].Record of the 21st European Photovoltaic Solar Energy Conference,2006:597-660.

[51] DALLAS W,MONASTYRSKYI A,POLUPAN O,et al.Inline Crack Detection in PV Silicon Wafers Resonance Ultrasonic Vibrations Approach[C].第二届晶体硅太阳电池及材料科学与技术国际研讨会论文集,厦门,2007年.

[52] 刘恩科,朱秉生,罗晋生等,半导体物理学[M].西安:西安交通大学出版社,1998:286.

[53] 柳效辉,徐林,肖晨江等,晶体硅太阳电池电致发光的研究[J].太阳能学报,2009.

[54] WRFEL P,TRUPKE T,PUZZER T,et al.Diffusion lengths of silicon solar cells from luminescence images[J].J.Appl.Phys,2007:101-110.

[55] EMERY K,DUNLAVY D,FIELD H,et al.Photovoltaic Spectral Responsivity Measurements[C].Proc.2nd world Conf.Photovoltaic Solar Energy Conversion,1998:2298-2301.

[56] METZDORF J.Calibration of solar cells.1:The differential spectral responsivity method [J].Appl.Opt.1987,26:1701-1708.

[57] STRYI-HIPP G,et al.Precision spectral response and I-V characterization of concentrator cells[C].Proc.23rd IEEE photovoltaic Specialist Conf.,1993:303-308.

[58] 孙恒慧,包宗明,半导体物理实验[M].高等教育出版社,1986:97-104.

[59] ASTM F28-91,Standards test methods for Minority-Carrier lifetime in bulk germanium and silicon by measurement of photoconductivity decay[S].

[60] SINTON R A,CUEVAS A.Contactless determination of current-voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photo conductance data[J].Appl.Phys.Lett.1996,69:2510-2512.

[61] PANG S K,ROHATGI A.A new methodology for separating SRH lifetime and Auger recombination coefficients from the photoconductivity decay technique[J].J.Appl.Phys.1993:74,5554-5560.

[62] ASTM F1535-00,Standard test method for carrier recombination lifetime in silicon wafers by noncontact measurement of photoconductivity decay by microwave reflectance[S].

[63] 王正秋,龚海梅,李言谨,等.一种测试少子寿命的装置[P].中国专利,95243479.2,1996.

[64] TRIBUTSCH H,BECK G,KUNST M.Microwave measuring and apparatus for contactless non-destructive testing of photosensitive materials[P].U.S.Patent,4,704,576,1987

[65] MORIN M,FRIEDT J,NAKAI Y,et al.Method and apparatus for evaluating semiconductor wafers by irradiation with microwave and excitation light[P].U.S.Patent,5,430,386,1995

[66] SIRLETO L,et al.Separation of bulk lifetime and surface recombination velocity obtained by transverse optical probing and multi-wavelength technique[J].Optics and Lasers in Engineering 2002,38:461-472.

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈