为了保证25年的使用寿命,经过几十年的总结,人们对生产晶体硅太阳电池组件所用的主要原材料的性能及要求做出了规定,下面就晶体硅太阳电池组件生产过程中所使用的主要原材料给予介绍。
1)晶体硅太阳电池片
目前,生产晶体硅太阳电池组件所用的晶体硅太阳电池片主要有125mm× 125mm单晶硅太阳电池,156mm×156mm单晶硅太阳电池片及156mm×156mm多晶硅太阳电池片,其厚度为200μm,外形如图9.1所示。

图9.1 单晶硅太阳电池片

图9.2 晶体硅太阳电池的等效电路
理想的晶体硅太阳电池可以用单二极管等效电路的模型来表示,如图9.2所示。图中Rs为太阳电池的等效串联电阻,包括:太阳电池的基区电阻,扩散区的薄层电阻,电极接触电阻,主栅线电阻,细栅线电阻,背接触电阻;Rsh为太阳电池等效并联电阻,即在太阳电池内部产生的光生电流,有一部分通过电池的边缘漏电而损失,相当于一个电阻并联在电池的两极之间;RL为负载电阻;Iph为光生载流子在p-n结内电场作用下漂移运动产生的电流,称为光生电流;Id为流过太阳电池二极管的电流;Ish为流过并联电阻Rsh的电流。
通常,晶体硅太阳电池组件是由单体太阳电池串联组成的,理想条件下,组件的输出电压是各电池电压之和,组件的输出电流由输出电流最小的来决定,因此晶体硅太阳电池组件的等效电路也可以用图9.2来表示,晶体硅太阳电池组件的I-V特性也与电池的类似,如图9.3所示。

图9.3 晶体硅太阳电池组件的I-V特性曲线

图9.4 太阳电池逆电流测试方法
为了确保每个太阳电池组件所用电池单片的电性能一致性良好,在组件制造时,要对电池片性能进行分选,不允许将电性能差异大的电池片串联在同一块组件中,为了组件外观美观,通常在组件制造时对电池片的色差也要进行分选。
另外,为了避免太阳能光伏组件在户外使用时出现热斑,通常要求在生产组件时所用的晶体硅太阳电池片具有较小的逆电流。晶体硅太阳电池的逆电流是指给太阳电池加上一定的反向电压时流过太阳电池的电流,图9.4给出了测试太阳电池逆电流的测试方法[3]。
在生产晶体硅太阳电池组件时,如果选用的晶体硅太阳电池片逆电流过大,那么当发生局部遮挡时,旁路二极管并不起保护作用,易损坏太阳电池组件。图9.5给出了晶体硅太阳电池组件中采用了逆电流过大的电池时,由于发生局部遮挡,当发生热斑时,旁路二极管并未保护导致组件损坏的案例。

图9.5 逆电流大的电池局部遮挡时,旁路二极管并未保护
2)低铁压花钢化玻璃
目前,生产晶体硅太阳电池组件所使用的玻璃通常用压延法生产,典型的厚度为3.2mm±0.3mm,在太阳电池光谱响应的波长范围内(350~1 100nm)折合3mm标准厚度的太阳光直接透射比应大于91%,对于大于1 200nm的红外光有较高的反射率。
降低玻璃的铁含量,可以有效地增加玻璃的透过率,太阳电池玻璃铁含量(Fe2O3)应不高于0.015%。玻璃生产过程中将两面做成大小不同的绒面状可以增强太阳光的入射量,钢化的目的是为了增加玻璃的强度,起到长期保护太阳电池的作用。
用作晶体硅太阳能光伏组件封装材料的钢化玻璃,通常要求抗机械冲击强度要好,弯曲度小,外观无划伤。太阳电池玻璃弓形弯曲度不应超过0.2%;波形弯曲度任意300mm范围不应超过0.3mm。
为了防止钢化玻璃在封装前后碎裂,通常要求钢化玻璃每米边上有长度不超过10mm,自玻璃边部向玻璃板表面延伸深度不超过2mm,自板面向玻璃另一面延伸不超过玻璃厚度三分之一的爆边。钢化玻璃内部不允许有长度小于1mm的集中的气泡。对于长度大于1mm,但是不大于6mm的气泡每平方米不得超过6个,不允许有结石,裂纹,缺角的情况发生,在50mm×50mm的区域内碎片数必须超过40个,且允许有少量长条形碎片,其长度不超过100mm。不合格的钢化容易导致组件在使用中碎裂,图9.6给出了使用中的组件由于不合格的钢化发生碎裂的情况。
为了减小晶体硅太阳电池组件的玻璃的光学反射,提高组件的功率输出,现在越来越多地使用镀膜玻璃。光伏镀膜玻璃原片采用3.2mm的超白钢化玻璃,以特种纳米涂料为主要原料经高温处理,便得到了光伏镀膜玻璃。要求镀膜后的玻璃透光率在原基础上提高2%以上,镀膜玻璃的光学膜与玻璃基材附着力良好、耐候及耐腐蚀性能好、自清洁性能好、使用寿命长等。

图9.6 不合格的钢化导致的组件碎裂
选用镀膜玻璃时,应开展以下实验:
耐水性实验:在水中浸泡96h,所镀膜层无明显变化,试验前后透光率变化值应不大于0.5%。
耐酸性实验:在5%H2SO4溶液中浸泡48h,所镀膜层无明显变化,试验前后透光率变化值应不大于0.5%。
耐碱性实验:在饱和的Ca(OH)2溶液中浸泡48h,所镀膜层无明显变化,试验前后透光率变化值应不大于0.5%。
此外还要开展耐盐雾性实验,耐人工气候老化实验,涂层耐温变性实验,耐玷污性实验等,确保采用镀膜玻璃的太阳电池组件也能达到25年以上的使用寿命。
3)EVA
用于晶体硅太阳电池囊封的材料是EVA,它是乙烯与醋酸乙烯脂的共聚物,化学式结构如图9.7所示:(https://www.xing528.com)

图9.7 EVA的分子式
EVA是一种热固性的热熔胶,常温下无黏性,以便操作,经过一定条件热压便发生熔融粘接与交联固化,变的完全透明。长期的实践证明:和其他材料相比,EVA在太阳电池封装与户外使用中均获得了相当满意的效果。
EVA厚度在0.4~0.6mm之间,要求表面平整,厚度均匀,内含交联剂,能在150℃固化温度下交联,采用挤压成型工艺形成稳定胶层。
EVA主要有两种:快速固化和常规固化。
EVA具有优良的柔韧性,耐冲击性,弹性,光学透明性,黏着性,耐环境应力开裂性,耐侯性,耐化学药品,热密封性。
固化后的EVA能承受大气变化且具有弹性,它将晶体硅太阳电池片“上盖下垫”,并和上层保护材料玻璃,下层保护材料TPT利用真空层压技术黏合为一体。
另一方面,它和玻璃黏合后能提高玻璃的透光率,起着增透的作用,并对太阳电池组件的输出有增益作用。
EVA的性能主要取决于分子量(用熔融指数MI表示)和醋酸乙烯脂(以VA表示)的含量。当MI一定时,VA的弹性,柔软性,黏结性,相溶性和透明性提高,VA的含量降低,则接近聚乙烯的性能。当VA含量一定时,MI降低则软化点下降,表面光泽改善,但是强度降低,分子量增大,可提高耐冲击性和应力开裂。
不同的温度对EVA的交联度有比较大的影响,EVA的交联度直接影响到组件的性能以及使用寿命。在熔融状态下,EVA与晶体硅太阳电池片,玻璃,TPT产生黏合,在这过程中既有物理也有化学的键合。当EVA加热到一定温度时,交联剂分解产生自由基,引发EVA分子之间的结合,形成三维网状结构,导致EVA胶层交联固化,当交联度达到60%以上时能承受环境的变化,因而用EVA囊封太阳电池组件,可以达到很长的使用寿命。在实际生产过程中,EVA的交联度一般控制在85%~95%之间。
4)背板
用作晶体硅太阳电池背板的材料主要有TPT,TPE和PET等,TPT的结构为Tedlar/Polyster/Tedlar三层复合结构,TPE为带有EVA的两层结构,PET为单层聚酯结构,它用在组件背面,作为背面保护和电绝缘材料。
用于晶体硅太阳电池的背板要求纵向收缩率不大于1.5%。实践证明:背板的外层保护层最好含氟,这样抗环境侵蚀能力强。另白色的背板对阳光起反射作用,和黑色背板相比,组件的封装损失小,并因其具有较高的红外发射率,还可降低组件的工作温度。
5)铝合金边框
铝合金边框的主要作用是保护玻璃,便于安装和运输,增加了晶体硅太阳电池组件的密封性和整体的机械强度。
组件用金属边框为铝合金材料,为达到光伏组件要求的机械强度及其他要求,参照GB/T3190—1996《变形铝及铝合金化学成分》,要求采用6063T5以上的铝合金材料。
太阳电池组件要保证长达25年的使用寿命,铝合金表面必须经过处理,也即阳极氧化,表面氧化层厚度须大于20μm,用于太阳电池组件的边框应无变型,表面无划伤。
6)接线盒
晶体硅太阳电池组件的正,负极从背板引出后需要一个专门的电气连接盒来实现与外电路的连接。
为了保证25年的使用寿命,接线盒应由工程塑料注塑制成,并加有防老化和抗紫外线辐射剂,能确保组件在室外长期使用不出现老化破裂现象。接线柱应由外镀镍层的电解铜制成,能确保电气导通及电气连接的可靠。接线盒应用硅橡胶粘接在TPT表面。对用于太阳电池组件接线盒的要求是:外壳具有很好的抗老化、耐紫外线能力,满足室外恶劣环境条件下的使用要求,晶体硅太阳电池组件用接线盒IP等级最低要求为IP54。
7)硅胶
太阳能光伏组件主要用胶的地方有:边框密封、接线盒黏接、引出汇流条密封。边框密封主要是把层压件和边框进行黏接密封;接线盒黏接主要是把接线盒和背板用硅胶进行黏接;汇流条密封主要用硅胶把汇流条的引出端进行密封。
对硅胶的选用要求:
(1)容易使用,单一组分,无需混合。
(2)固化后牢固、具有一定的弹性。
(3)固化时间尽可能短。
(4)具有优良的耐候、抗紫外线、潮湿、空气污染等。
8)互连条与汇流条
互连条主要用于晶体硅太阳电池片间的互连,汇流条主要用于电池串之间的汇流,分含铅和无铅两种,对它们的要求是:
(1)可焊性好。
(2)导电能力强。
(3)硬度要适中,以免造成裂片。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。
