首页 理论教育 常规晶体硅太阳电池的制备方法、进展与演变

常规晶体硅太阳电池的制备方法、进展与演变

时间:2023-11-27 理论教育 版权反馈
【摘要】:本章阐述了常规晶体硅太阳电池的制备方法以及其在工艺和结构上的各种进展和演变。近年来随着设备和材料的不断改进提高,这种常规晶体硅太阳电池的性能也不断提高,铝背场的复合损失以及它的极低的背表面光反射成了限制这种电池性能的主要因素。抛弃了铝背场而采用背面钝化,成了高效太阳电池的主要特征,再加上多样的发射结设计和电池结构的多样化,陷光效应的设计,金属接触的设计等。

常规晶体硅太阳电池的制备方法、进展与演变

本章阐述了常规晶体太阳电池的制备方法以及其在工艺和结构上的各种进展和演变。常规晶硅是基于铝表面场的结构。铝背场在一定程度上减小背表面的复合损失,提高了电池的Voc。近年来随着设备和材料的不断改进提高,这种常规晶体硅太阳电池的性能也不断提高,铝背场的复合损失以及它的极低的背表面光反射成了限制这种电池性能的主要因素。

因而本章进一步阐述了高效晶体硅太阳太阳电池的理论和技术方法。抛弃了铝背场而采用背面钝化,成了高效太阳电池的主要特征,再加上多样的发射结设计和电池结构的多样化,陷光效应的设计,金属接触的设计等。高效太阳电池成为晶体硅电池发展的一个新领域。

最后,作者感谢李鹏、党王娟、王建波、王丽春、宣荣卫、赵彦、黄海冰、吕俊、杨怡在写作过程中的协助。

参考文献

[1] NEUHAUS D H,MUNZER A.Industrial silicon wafer solar cells[J].Advances in Opto Electronics,2007:1-15.

[2] ZHAO J,GREEN M A.Optimised antireflection coatings for high efficiency silicon solar cells[J].IEEE Transactions on Electron Devices,1991,ED-38:1925-1934.

[3] HILALI M M.Understanding and development of manufacturable screen printed contacts on high sheet-resistance emitters for low-cost silicon solar cells[M].Atlanta,Georgia Institute of Technology,2005.

[4] HUSTER F.Investigation of the alloying process of screen printed aluminium pastes for the BSF formation on silicon solar cells[C].20th European Photovoltaic Solar Energy Conf.,Barcelona,2005:6-10.

[5] 章从福.应用材料公司推出Esatto太阳能电池双重丝网印刷技术,《半导体信息》2010年03期:37.

[6] GALIAZZO M.Reliable double printing of Ag contacts for c-Si cell manufacturing[C].Second Metallization for Crystalline Silicon Solar Cells,Konstanz,2010,http://www.secondmetal.eu/program.

[7] ZHAO J.Efficiency improvement by selective emitter solar cells[C].Semi China Exhibition and Conference,Shanghai,2008.

[8] GAUTHIER M,GRAU M.Industrial approaches of selective emitter on multicrystalline silicon solar cells[C].24thEuropean Photovoltaic Solar Energy Conf.,Hamburg,2009:875-1878.

[9] KHLER J R,GRABITZ P,EISELE S J,et al.Laser doped selective emitters yield 0.5%efficiency gain[C].24th European Photovoltaic Solar Energy Conf.,Hamburg,2009:1847-1850.

[10] POPLAVSKYY D,SCARDERA G,ABBOTT M,et al.Silicon ink selective emitter process:optimization of selectively diffused regions for short wavelength response[C].35th IEEE Photovoltaic Specialists Conf.,Honolulu,2010:003565-003569.

[11] ANTONIADIS H,JIANG F,SHAN W,et al.All screen printed mass produced silicon ink selective emitter solar cells[C].35th IEEE Photovoltaic Specialists Conf.,Honolulu,2010:001193-001196.

[12] WEIZHI HAN.Mass production implementation of Solion ion implantation technology[C].27th European Photovoltaic Solar Energy Conf.,Frankfurt,2012:1498-1502.

[13] HIESLMAIR H,et al.High productivity ion implantation for 19%efficient industrial solar cells[C].27th European Photovoltaic Solar Energy Conf.,Frankfurt,2012:1901-1905.

[14] KERSCHAVER V,et al.A novel silicon solar cell structure with both external polarity contacts on the back surface[C].2nd World Conference on Photovoltaic Energy Conversion,Vienna,1998:1479-1482.

[15] CLEMENT F,et al.High throughput via-metallization technique for multi-crystalline metal wrap through(MWT)silicon solar cells exceeding 16%efficiency[J].Solar Energy Materials and Solar Cells,2010,94(1):51-56.

[16] LOHMULLER E,et al.20%efficient passivated large-area metal wrap through solar cells on boron-doped Cz silicon[J].IEEE Electron Device Letters,2011,32(12):1719-1721.

[17] CLEMENT F,et al.Industrially feasible multi-crystalline metal wrap through(MWT)silicon solar cells exceeding 16%efficiency[J].Solar energy materials and solar cells,2009,93(6):1051-1055.

[18] GUILLEVIN N,et al.279Watt Metal-Wrap-Through module using industrial processes [C].27th European Photovoltaic Solar Energy Conf.,Germany,2012:2025-2029.

[19] LAMERS M.W.P.E,et al.17.9%Metal-wrap-through mc-Si cells resulting in module efficiency of 17.0%[J].Progress in Photovoltaics:Research and Applications,2012,10:62-73.

[20] BENJAMIN T,et al.The Path to industrial production of highly efficient metal wrap through silicon solar cells[J].GREEN,2013,2(4):171-176.

[21] THAIDIGSMANN B,et al.Large-area p-type HIP-MWT silicon solar cells with screen printed contacts exceeding 20%efficiency[J].Phys.Status Solidi(RRL),2011,5(8):286-288.

[22] 王栩生,MWT电池及组件技术发展[C].苏州太阳能光伏技术培训班上的讲座,2012年9月14日.

[23] ZHAO J,WANG A,GREEN M A.24.5%efficiency silicon PERT cells on MCZ substrates and 24.7%efficiency PERL cells on FZ substrates[J].Progress in Photovoltaics,1999,7:471-474.

[24] SCIENCE NEWS.Highest silicon solar cell efficiency ever reached[J].Science Daily,Oct.24,2008,(http://www.sciencedaily.com/releases/2008/10/081023100536.htm).

[25] DAVIS J R,ROHATGI A,HOPKINS R H,et al.Impurities in silicon solar cells[J].IEEE Transactions on Electron Devices,1980,ED-27:677-687.

[26] KNOBLOCH J,GLUNZ S W,BIRO D,et al.Solar cells with efficiencies above 21% processed from Czochralski grown silicon[C].25th IEEE Photovoltaic Specialist Conf.,Washington,1996:405-408.

[27] SCHMIDT J,ABERLE A G,HEZEL R.[C].26th IEEE Photovoltaic Specialist Conf.,Anaheim,1997:13.

[28] ZHAO J,WANG A,GREEN M A.Performance degradation in CZ(B)cells and improved stability high efficiency PERT and PERL silicon cells on a variety of SEH MCZ(B),FZ(B)and CZ(Ga)substrates[J].Progress in Photovoltaics,2000,8:549-558.

[29] SHIRAKI H.Stacking fault generation suppression and grown-in defect elimination in dislocation free silicon wafers by HCl oxidation[J].Jap.J.of Appl.Phys.,1976,15:1-10.

[30] FAIR R B.Oxidation,impurity diffusion,and defect growth in silicon-an overview[J].J.Electrochem.Soc.,1981,128:1360-1368.(www.xing528.com)

[31] ROBINSON P H,Heiman F P.Use of HCl gettering in silicon device processing[J].J.Electrochem.Soc.,1971,118:141-143.

[32] ZHAO J,WANG A,GREEN M A.Emitter design for high efficiency silicon Solar cells part 1:terrestrial cells[J].Progress in Photovoltaics,1993,1:193-202.

[33] YABLONOVITCH E,GMITTER T,SWANSON R M,et al.A 720mV open circuit voltage SiOx:c-Si:SiOxdouble heterostructure solar cell[J].Appl.Phys.Lett.,1985,47:1211.

[34] HOEX B.ScienceDaily[J].May 17,2008.http://www.sciencedaily.com/releases/2008/05/080514154702.htm.

[35] BENICK J,HOEX B,et al.High efficiency n-type Si solar cells on Al2O3-passivated boron emitters[J].Appl.Phys.Lett.2008,92:253504.

[36] DINGEMANS G,ENGELHART P,SEGUIN R,et al.Comparison between aluminum oxide Surface passivation films deposited with thermal ALD,plasma ALD and PECVD[C].35th IEEE Photovoltaic Specialists Conf.,Honolulu,2010:3118-3121.

[37] ZHAO J,WANG A.Rear emitter n-type passivated emitter,rear totally diffused silicon solar cell structure[J].Appl.Phys.Lett.,2006,88:242102.

[38] KNOBLOCH J,NOEL A,SCHAEFFER E.High-efficiency solar cells form FZ,CZ and mc silicon material[C].23th IEEE Photovoltaic Specialists Conf.,Louisville,1993:271.

[39] GLUNZ S,KNOBLOCH W J,et al.Optimized high-efficiency silicon solar cells with Jsc=42mA/cm2 and h=23.3%[C].14th European Photovoltaic Solar Energy Conf.,Barcelona,1997:392-395.

[40] HONSBERG C B,WENHAM S R,et al.High-efficiency,low-cost buried contact silicon solar cells[C].24th IEEE Photovoltaic Specialists Conf.,Waikoloa,1994,2:1473-1476.

[41] KUEHNLEINV H H,KOESTERKE N,CIMIOTTI C,et al.Next generation of front grid metallization:LCP selective emitter combined with Ni-Cu-Sn direct plating on silicon [C].24th European Photovoltaic Solar Energy Conf.,Hamburg,2009:1712-1714.

[42] GRASSO F S,GAUTERO L,RENTSCH J,et al.Characterization of aluminium screenprinted local contacts[C].2nd Workshop on Metallization for Crystalline Silicon Solar Cells,Constance,2010:15-21.

[43] URREJOLA E,PETER K,PLAGWITZ H,et al.Al-Si alloy formation in narrow p-type Si contact areas for rear passivated solar cells[J].J.Appl.Phys.,2010,107:124516.

[44] RIEGEL S,MUTTER F,LAUERMANN T,et al.Review on screen printed metallization on p-type silicon[C].3rd Workshop on Metallization for Crystalline Silicon Solar Cells,Konstanz,2012,21:14-23.

[45] BEAUCARNE G,SCHUBER G,HOORNSTRAC J,et al.Summary of the 3rd Workshop on metallization for crystalline Silicon Solar Cells[C].3rd Workshop on Metallization for Crystalline Silicon Solar Cells,Konstanz,2012,21:2-13.

[46] YABLONOVITCH E,CODY G D.Intensity enhancement in textured optical sheets for solar cells[J].IEEE Transactions on Electron Devices,1982,ED-29:300-305.

[47] CAMPBELL P,GREEN M A.Light trapping properties of pyramidally textured surfaces [J].J.Appl.Physics,1987,62:243-249.

[48] GREEN M A,BLAKERS A W,ZHAO J,et al.Characterisation of 23%efficiency silicon solar cells[J].IEEE Transactions on Electron Devices,1990,ED-37:331-336.

[49] GREEN M A,ZHAO J,WANG A,et al.45%efficient silicon photovoltaic cell under monochromatic light[J].IEEE Electron Device Letters,1992,13:317-318.

[50] WANG A,ZHAO J,WENHAM S R,GREEN M A.21.5%efficient thin silicon solar cell[J].Progress in Photovoltaics,1996,4:55-58.

[51] WANG A.High efficiency PERC and PERL silicon solar cells[M].Ph.D.Thesis,University of New South Wales,1993.

[52] ZHAO J,WANG A,YUN F,et al.20,000PERL silicon cells for the‘1996World Solar Challenge’solar car race[J].Progress in Photovoltaics,1997,5:269-276.

[53] GLUNZ S W,et al.Laser-fired contact silicon solar cells on p-and n-substrates[C].19th European Photovoltaic Solar Energy Conf.,Paris,2004:408.

[54] GLUNZ S W,BENICK J,BIRO D,et al.n-type silicon:enabling efficiencies>20%in industrial production[C].35th IEEE Photovoltaic Specialists Conf.,Honolulu,2010:50-56.

[55] MCLNTOSH K R,CUDZINOVIC M J,SMITH D D,et al.The choice of silicon wafer for the production of low-cost rear-contact solar cells[C].3rd World Conference on Photovoltaic Energy Conversion,Osaka,2003,1:971-974.

[56] SMITH D,COUSINS P,MASAD A.SunPower’s Maxeon Gen III solar cell:high efficiency and energy yield[C].39th IEEE Photovoltaic Specialist Conf.,Tampa,2013:256.

[57] ALEMANA M,DASA J,JANSSENSA T,et al.Development and integration of a high efficiency baseline leading to 23%IBC cells[J].Energy Procedia,2012,27:638-645.

[58] IMEC,ScienceDaily[J].Dec 1,2011,http://www.sciencedaily.com/releases/2011/12/111201094257.htm

[59] TANAKA M,OKAMOTO S,TSUGE S,et al.[C].3rd World Conf.on Photovoltaic Energy Conversion,Osaka,2003.

[60] TAGUCHI M,YANO A,TOHODA S,et al.24.7%record efficiency HIT solar cell on thin silicon wafer[C].39th IEEE Photovoltaic Specialist Conf.,Tampa,June,2013,Paper#884.

[61] BEITEL C.A greater than 20-percent efficient crystalline cell design without silver,Photon’s 8th PV Production Equipment conf.,Shanghai,2012.

[62] BSCKE T S,KANIA D,HELBIG A,et al.Bifacial n-type cells with>20%front side efficiency for low cost production[J].IEEE Journal of Photovoltaics,2013,3:674-677.

[63] ROMIJN I G,AKEN B V,ANKER J,et al.Industrial implementation of efficiency improvements in n-type solar cells and modules[C].27th European Photovoltaic Solar Energy Conf.,Frankfurt,2012:533-537.

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈