1.信息收集
入侵检测的第一步是信息收集,内容包括系统、网络、数据及用户活动的状态和行为。而且,需要在计算机网络系统中的若干不同关键点(不同网段和不同主机)收集信息,这除了尽可能扩大检测范围的因素外,还有一个重要的因素就是从一个源来的信息有可能看不出疑点,但从几个源来的信息的不一致性却是可疑行为或入侵的最好标识。
当然,入侵检测很大程度上依赖于收集信息的可靠性和正确性,因此,很有必要只利用所知道的真正的和精确的软件来报告这些信息。因为黑客经常替换软件以搞混和移走这些信息,例如替换被程序调用的子程序、库和其他工具。黑客对系统的修改可能使系统功能失常并看起来跟正常的一样,而实际上不是。例如,UNIX系统的PS指令可以被替换为一个不显示侵入过程的指令,或者是编辑器被替换成一个读取不同于指定文件的文件(黑客隐藏了初试文件并用另一版本代替)。这需要保证用来检测网络系统的软件的完整性,特别是入侵检测系统软件本身应具有相当强的坚固性,防止被篡改而收集到错误的信息。
入侵检测利用的信息一般来自以下4个方面。
(1)系统和网络日志文件
黑客经常在系统日志文件中留下他们的踪迹,因此,充分利用系统和网络日志文件信息是检测入侵的必要条件。日志中包含发生在系统和网络上的不寻常和不期望活动的证据,这些证据可以指出有人正在入侵或已成功入侵了系统。通过查看日志文件,能够发现成功的入侵或入侵企图,并很快地启动相应的应急响应程序。日志文件中记录了各种行为类型,每种类型又包含不同的信息,例如记录“用户活动”类型的日志,就包含登录、用户ID改变、用户对文件的访问、授权和认证信息等内容。很显然地,对用户活动来讲,不正常的或不期望的行为就是重复登录失败、登录到不期望的位置以及非授权的企图访问重要文件等。
(2)目录和文件中的不期望的改变
网络环境中的文件系统包含很多软件和数据文件,包含重要信息的文件和私有数据文件经常是黑客修改或破坏的目标。目录和文件中的不期望的改变(包括修改、创建和删除),特别是那些正常情况下限制访问的,很可能就是一种入侵产生的指示和信号。黑客经常替换、修改和破坏他们获得访问权的系统上的文件,同时为了隐藏系统中他们的表现及活动痕迹,都会尽力去替换系统程序或修改系统日志文件。
(3)程序执行中的不期望行为
网络系统上的程序执行一般包括操作系统、网络服务、用户启动的程序和特定目的的应用,例如数据库服务器。每个在系统上执行的程序由一到多个进程来实现。每个进程执行在具有不同权限的环境中,这种环境控制着进程可访问的系统资源、程序和数据文件等。一个进程的执行行为由它运行时执行的操作来表现,操作执行的方式不同,它利用的系统资源也就不同。操作包括计算、文件传输、设备和其他进程,以及与网络间其他进程的通信。
一个进程出现了不期望的行为可能表明黑客正在入侵该系统。黑客可能会将程序或服务的运行分解,从而导致程序或服务失败,或者是以非用户或管理员意图的方式操作。
(4)物理形式的入侵信息(www.xing528.com)
这包括两个方面的内容,一是未授权的对网络硬件连接;二是对物理资源的未授权访问。黑客会想方设法去突破网络的周边防卫,如果他们能够在物理上访问内部网,就能安装他们自己的设备和软件。因此,黑客就可以知道网上的、由用户加上去的不安全(未授权)设备,然后利用这些设备访问网络。例如,用户在家里可能安装Modem以访问远程办公室,与此同时黑客正在利用自动工具来识别在公共电话线上的Modem,如果一拨号访问流量经过了这些自动工具,那么这一拨号访问就成了威胁网络安全的后门。黑客就会利用这个后门来访问内部网,从而越过了内部网络原有的防护措施,然后捕获网络流量,进而攻击其他系统,并偷取敏感的私有信息等。
2.信号分析
对上述4类收集到的有关系统、网络、数据及用户活动的状态和行为等信息,一般通过3种技术手段进行分析:模式匹配、统计分析和完整性分析。其中前两种方法用于实时的入侵检测,而完整性分析则用于事后分析。
(1)模式匹配
模式匹配就是将收集到的信息与已知的网络入侵和系统误用模式数据库进行比较,从而发现违背安全策略的行为。该过程可以很简单(如通过字符串匹配以寻找一个简单的条目或指令),也可以很复杂(如利用正规的数学表达式来表示安全状态的变化)。一般来讲,一种进攻模式可以用一个过程(如执行一条指令)或一个输出(如获得权限)来表示。该方法的一大优点是只需收集相关的数据集合,显著减少系统负担,且技术已相当成熟。它与病毒防火墙采用的方法一样,检测准确率和效率都相当高。但是,该方法存在的弱点是需要不断地升级以对付不断出现的黑客攻击手法,不能检测到从未出现过的黑客攻击手段。
(2)统计分析
统计分析方法首先给系统对象(如用户、文件、目录和设备等)创建一个统计描述,统计正常使用时的一些测量属性(如访问次数、操作失败次数和延时等)。测量属性的平均值将被用来与网络、系统的行为进行比较,任一观察值在正常值范围之外时,就认为有入侵发生。例如,统计分析可能标识一个不正常行为,因为它发现一个在晚八点至早六点不登录的账户却在凌晨两点试图登录。其优点是可检测到未知的入侵和更为复杂的入侵,缺点是误报、漏报率高,且不适应用户正常行为的突然改变。具体的统计分析方法如基于专家系统的、基于模型推理的和基于神经网络的分析方法,正处于研究热点和迅速发展之中。
(3)完整性分析
完整性分析主要关注某个文件或对象是否被更改,这经常包括文件和目录的内容及属性,它在发现被更改的、被特洛伊化的应用程序方面特别有效。完整性分析利用强有力的加密机制,称为消息摘要函数(例如MD5),它能识别哪怕是微小的变化。其优点是不管模式匹配方法和统计分析方法能否发现入侵,只要是成功的攻击导致了文件或其他对象的任何改变,它都能够发现。缺点是一般以批处理方式实现,不用于实时响应。尽管如此,完整性检测方法还应该是网络安全产品的必要手段之一。例如,可以在每一天的某个特定时间内开启完整性分析模块,对网络系统进行全面的扫描检查。
入侵检测系统的典型代表是ISS公司(国际互联网安全系统公司)的RealSecure。它是计算机网络上自动实时的入侵检测和响应系统。它无妨碍地监控网络传输并自动检测和响应可疑的行为,在系统受到危害之前截取和响应安全漏洞和内部误用,从而最大限度地为企业网络提供安全。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。