首页 理论教育 刘徽《九章筭术》中的数学之树

刘徽《九章筭术》中的数学之树

时间:2023-11-23 理论教育 版权反馈
【摘要】:刘徽认为,数学本身是一个和谐的整体。实际上,早在1700多年前,刘徽通过深入研究《九章筭术》,“观阴阳之割裂,总筭术之根源”,提出了数学之树的思想:事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已。显然,在刘徽看来,“规矩、度量可得而共”便是数学之树的“端”。在这个体系中,刘徽尽管也使用类比和归纳逻辑,但主要地是使用演绎逻辑,从而将数学知识建立在必然性的基础之上。

刘徽《九章筭术》中的数学之树

刘徽认为,数学本身是一个和谐的整体。

近代人们常把数学形象地画作一株大树,通常是一株大栎树。树根上标着代数、平面几何、三角、解析几何和无理数。在这些根上长出强大的树干,即微积分。树干的顶端发出许多大的枝条,并再分成较小的枝条,即复变函数、实变函数、变分法、概率论等高等数学的各个分支[3]。实际上,早在1700多年前,刘徽通过深入研究《九章筭术》,“观阴阳之割裂,总筭术之根源”,提出了数学之树的思想:

事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已。又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣。

刘徽的数学之树“发其一端”,“端”实际上就是数学之树的根。这个“端”是什么呢?刘徽说:

虽曰九数,其能穷纤入微,探测无方。至于以法相传,亦犹规矩度量可得而共,非特难为也。[2]

规矩在这里指几何图形,即我们通常所说的客观世界的空间形式;度量是度量衡,在这里指客观世界的数量关系。因此,规矩、度量可以看成刘徽数学之树的根,数学方法由之产生出来。恩格斯在总结19世纪之前的数学时说:

纯数学的对象是现实世界的空间形式和数量关系。[4]

刘徽对数学的认识与恩格斯惊人的一致。显然,在刘徽看来,“规矩、度量可得而共”便是数学之树的“端”。世代相传的数学方法应当是客观世界的空间形式和数量关系的统一。刘徽的话很形象地概括了中国传统数学中数与形相结合,几何问题与算术、代数问题相统一这个重要特点。根据刘徽的《九章筭术注序》及其为九章写的注中形诸文字者,我们大体可以将刘徽的数学之树的面貌勾勒于下:(www.xing528.com)

数学之树从规矩、度量这两条根生长出来,统一于数,形成以率为纲纪的数学运算这一本干。刘徽以《九章筭术》的长方形面积公式、长方体体积公式(可视为定义)及他自己提出的率和正负数的定义为前提,以今有术为都术,以衰分问题、盈不足问题、开方问题、方程问题、面积问题、体积问题、勾股测望问题等作为主要枝条。又分出经率术,其率术和返其率术,衰分术和返衰术,重今有术,均输术,盈不足术和两盈两不足术、盈适足不足适足术,多边形面积,圆田术、圆周率和曲边形面积,刘徽原理和多面体体积公式,截面积原理和圆体体积公式,勾股术和解勾股形诸术,勾股容方和勾股容圆术,一次测望问题和重差问题,开方术和开立方术,正负术,方程术和损益术、方程新术,不定方程等方法作为更细的枝条,形成了一株枝叶繁茂、硕果累累的大树,形成了一个完整的数学体系。

在这个体系中,刘徽尽管也使用类比和归纳逻辑,但主要地是使用演绎逻辑,从而将数学知识建立在必然性的基础之上。

在这个体系中,齐同原理、出入相补原理、极限思想和无穷小分割方法及截面积原理等是刘徽所使用的主要原理。齐同原理用于计算问题,出入相补原理用于解决多边形和多面体体积,极限思想、无穷小分割方法及截面积原理用于证明曲边形面积、多面体体积和圆体体积的公式。

这个体系“约而能周,通而不黩”,就是说简明而周全,通达和谐而没有滞碍,全面反映了当时中国人所掌握的数学知识。实际上,略知《九章筭术》的人即可看出九章的分布。在这里,数学概念和各个公式、解法不再是简单的堆砌,而是以演绎推理和数学证明为纽带,按照数学内部的实际联系和转化关系,形成了有机和谐的知识体系。

刘徽的数学理论体系与《九章筭术》的框架结构有着根本的不同,因此,它不是《九章筭术》框架的添补,而是对《九章筭术》的改造。

需要指出的是,说刘徽对《九章筭术》框架的改造,不是说在形式上,而是在实际上,在刘徽的头脑中。因为作注的形式,刘徽没有改变《九章筭术》的术文和题目的顺序,不得不将自己的数学知识分散到《九章筭术》的各条术文和各个题目中,但是,他的注没有任何逻辑矛盾而不能自洽的地方,没有任何循环推理,可见刘徽逻辑水平之高超。在文献注疏中以互训为重要方法的中国古代,这更是难能可贵的。可以说,刘徽的《九章筭术注》在内容上是革命的,而在形式上是保守的。然而,正是这种保守的形式,而不是撰著一部自成系统的高深著作,将自己的数学创造附着于《九章筭术》,使刘徽的数学创造尽管后人看不懂(有些难度最大的注,直到20世纪70年代末才被看懂)也能流传下来,避免了《缀术》那样因隋唐算学馆的学官“莫能究其深奥,是故废而不理”[5]遂失传的厄运。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈