冯·诺依曼数学家的声誉是在1930年才较好地确立起来的,主要依赖于他在集合论、量子论和算子论方面的工作。然而就纯粹数学而言,他走过了三个历程。第一是遍历性定理的证明。遍历性假设,可以精确地叙述为在希尔伯特空间上的算子理论,这正是冯·诺依曼早期用来使量子力学精确化的论题。冯·诺依曼叙述和证明了现在著名的关于酉算子的遍历性定理,并且用于算子理论的研究,取得了成功。
1900年,大卫·希尔伯特提出了著名的23个问题,它们总结了当时数学知识的状况,而且指明了今后所需做的工作。1933年,阿·哈尔证明了在拓扑群中存在着适当的测度(后来称为哈尔测度);他的证明发表在数学年刊上。在发表前,冯·诺依曼已接近了哈尔的结果,他清楚地看到这恰好是求解希尔伯特第五问题的一种特殊情况(紧致群)时所需要的,他的文章也发表在同一期数学年刊上,恰好紧接着哈尔的文早。
1930年下半年,冯·诺依曼发表了一系列关于算子环的论文(部分论文是和F.J.摩莱合作的)。该理论现在称为冯·诺依曼代数。也许,这是冯·诺依曼最值得人们铭记不忘的著作。它是算子理论在技术上最光辉的发展,它推广了许多有限维代数的熟知结果,是量子物理研究中最强有力的工具之一。
算子环理论的一个惊人的新的生长点是由冯·诺依曼命名的连续几何。普通几何论述维数为1、2、3的空间。在他论算子环的著作中,冯·诺依曼已看到,实际上决定一个空间的维数结构的是它所容许的旋转群。冯·诺依曼陈述了使得连续难数空间有可能成立的公理。这几年中他不断地思考和论述连续几何的论题。
1940年,是冯·诺依曼科学生涯的一个转折点。在此之前,他是一个通晓物理学的登峰造极的纯粹数学家;1940年以后则成为了一位牢固掌握纯粹数学的应用数学家。他开始对把数学应用到物理领域去的最主要的工具偏微分方程发生了兴趣。此后,他的文章主要是论述统计、冲激波、流问题、水动力学、空气动力学、弹道学、爆炸学、气象学以及把非古典的数学应用到现实世界去的两个新的领域:博弈论和计算机。
冯·诺依曼曾提出用聚变引爆核燃料的建议,并支持发展氢弹。1949年军队的嘉奖令赞扬他是物理学家、工程师、武器设计师和爱国主义者。冯·诺依曼在政治和行政方面的决策,很少站在所谓的“自由主义”这一边。他有时还站出来主张对俄国发起一场预防性的战争。早在1946年,原子弹试验就遭到了持反对意见者的批判,但是冯·诺依曼却认为它们是必需的。他不同意J.R.奥本海默反对核弹爆炸计划的意见,而且敦促美国在俄国掌握它之前就着手建造,然而在一次国会安全听证会上,他说:奥本海默是以“良好的愿望”反对这个规划的,但是一旦作出继续制造超级炸弹的决定,他的意见就是“很有建设性的。”他坚信奥本海默是一个可靠的人。
他是原子能委员会的成员,不得不“思考某些不可思议的问题”。他推动联合国去研究世界范围的放射性效应。早期太平洋原子弹试验的放射性外逸事件中,死亡一人。并使200人受伤,这件事几乎引起了全世界的关注。冯·诺依曼将这次事件与日本的某一次渡船事件造成的损失作了对比,渡船事件中有1000人死亡(其中包括20名美国人)。损失大大超过前者,于是他断言:为了用先进的技术来装备工业,承受某些尽可能小的损失,看来还是难免的。(www.xing528.com)
冯·诺依曼不仅曾经将自己的才能用于武器研究,而且他还发现,自己的时间和能力可以用到所谓的博弈论中去,这种理论主要用于经济学研究。博弈论的数学基础是一个命题,称为极大极小定理。极大极小定理用于处理一类最基本的二人博弈问题。如果博弈双方中的任何一方,对每种可能的博弈策略,考虑了可能遭到的极大损失,从而选择“极大损失”。极小的一种策略为“最优”策略,那么从统计角度来看,他就能够确保方案是最佳的。
数理经济学,过去模仿经典数学物理的技巧,所用的数学工具主要是分析(特别是微积分),将经济问题当作经典力学问题处理,这种方法的效果往往不太有效。冯·诺依曼抛弃力学的类比,代之以新颖的观点(对策论)和新的工具(组合和凸性的思想)。
博弈论在未来的数学和经济学中所处的地位,当时还不容预料。但是有些博弈论的热情支持者已经认为:博弈论可能会是“二十世纪前半期最伟大的科学贡献之一。”
对冯·诺依曼声望有所贡献的最后一个课题是电子计算机和自动化理论。计算机运行过程的逻辑成分是什么,从不可靠的元件组成的一台机器要得到实践上可靠的答案的最好办法是什么,一台机器需要“记住”些什么,用“存储器”装备它的最好办法是什么,能否造一台机器,不仅能节约计算工作而且也能减少建造新机器的困难,即能否设计一台自己能再生产的自动机,一台计算机能否成功地模仿“随机性”,使得当没有公式可遵循时,也能解出一个具体的物理问题(如怎样寻求一个最优的轰炸模型),计算机能通过大量的概率实验,推得一个统计上精确的答案吗?这些都是冯·诺依曼研究的问题。他为解答这些问题,作出了基本的贡献。
冯·诺依曼还提倡将计算机技术用于各个不同的学科领域,从求解偏微分方程的近似解,到长期精确的天气预报,以至最终达到控制天气。他建议研究的最引人注目的题目之一是对北极“冰帽”染色,以期减少它们辐射出的能量,提高地球热能,让冰岛的恶劣气候变得接近于夏威夷。
科学院交给冯·诺依曼的最后一个任务是整理和发表耶鲁的西列曼讲座的成果。他住医院期间,还一直在做这件工作,但是没有最终完成。他在整理西列曼讲座中所用的方法,用词的精确性,也间接地证明了,在多方面作出过卓越贡献的冯·诺依曼,始终首先是一位数学家。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。