模糊数学是在特定的历史背景中产生的,它是数学适应现代科学技术需要的产物。
首先,现实世界中存在着大量模糊的量,对这类量的描述和研究需要一种新的数学工具。我们知道,现实世界中的量是多种多样的,如果按着界限是否分明,可把这无限多样的量分为两类:一类是明晰的,另一类是模糊的。实践表明,在自然界、生产、科学技术以及生活中,模糊的量是普遍存在的。例如“高压”、“低温”、“偏上”、“适度”、“附近”、“美丽”、“温和”、“老年”、“健康”等等。这些概念作为现实世界事物和现象的状态反映,在量上是没有明晰界限的。
模糊数学产生之前的数学,只能精确地描述和研究那些界限分明的量,即明晰的量,把它们用于描述和研究模糊的量就失效了。对那些模糊的量,只有用一种“模糊”的方法去描述和处理,才能使结果符合实际。因此,随着社会实践的深化和科学技术的发展,对“模糊”数学方法进行研究也就成为十分必要的了。(www.xing528.com)
其次,电子计算机的发展为模糊数学的诞生准备了摇篮。自本世纪40年代电子计算机问世以来,电子计算机在生产、科学技术各领域的应用日益广泛。电子计算机发展的一个重要方向是模拟人脑的思维,以便能处理生物系统、航天系统以及各种复杂的社会系统。而人脑本身就是一种极其复杂的系统。人脑中的思维活动之所以具有高度的灵活性,能够应付复杂多变的环境,一个重要原因是逻辑思维和非逻辑思维同时在起作用。一般说来,逻辑思维活动可用明晰数学来描述和刻画,而非逻辑思维活动却具有很大的模糊性,无法用明晰数学来描述和刻画。因此,以二值逻辑为理论基础的电子计算机,也就无法真实地模拟人脑的思维活动,自然也就不具备人脑处理复杂问题的能力。这对电子计算机特别是人工智能的发展,无疑是一个极大的障碍。为了把人的自然语言算法化并编入程序,让电子计算机能够描述和处理那些具有模糊量的事物,从而完成更为复杂的工作,就必须建立起一种能够描述和处理模糊的量及其关系的数学理论。这就是模糊数学产生的直接背景。
模糊数学的创立者是美国加利福尼亚大学的札德教授。为了改进和提高电子计算机的功能,他认真研究了传统数学的基础——集合论。他认为,要想从根本上解决电子计算机发展与数学工具局限性的矛盾,必须建立起一种新的集合理论。1965年,他发表了题为《模糊集合》的论文,由此开拓出了模糊数学这一新的数学领域。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。