首页 理论教育 几何代数化的意义-数学领域的花絮

几何代数化的意义-数学领域的花絮

时间:2023-11-21 理论教育 版权反馈
【摘要】:几何代数化的出现,使得曲线变成了具有某种特定性质的点的轨迹,即可把曲线看作是由“点”通过运动而生成的,这就使人们对形的认识由静态发展到了动态。3.为微积分的创立准备了必要条件几何代数化思想形成的标志是解析几何的创立,笛卡儿在创立解析几何过程中,不仅提出了代数与几何相结合的思想,而且把变数引进了数学。此外,几何代数化的思想还给数学研究从方法论上提供了许多重要启示。

几何代数化的意义-数学领域的花絮

几何代数化对于数学的发展有着重要的意义,这里仅就几个方面加以分析。

1.把几何学推到一个新的阶段

几何代数化不仅为几何学提供了新方法,使许多难以解决的几何问题变得简单易解,更重要的是为几何学发展注入了新的活力,增添了崭新的内容。

首先,传统几何学的逻辑基础主要是推理,基本上是定性研究,如直线的平行性、曲线的相交、图形的全等等。几何代数化的出现,使得图形性质的研究变成方程的讨论和求解,而方程的研究又主要是数量上的分析,这就把几何学从定性研究阶段推到定量分析阶段。

其次,在传统几何学中,空间概念是在人们的社会实践活动中逐渐抽象和确立起来,这种空间概念具有明显的直观性和经验性,如一维的直线、二维的平面和三维的立体。几何代数化的出现,使得空间的几何结构实现了数量化,而数量化了的空间几何结构已不再局限于一维、二维和三维,它可以是n维以至无穷维的,这就把几何学的空间概念从低维扩张到了高维,即把几何学研究的内容从现实空间图形的性质扩展到抽象空间图形的性质。

第三,传统几何学主要研究固定不变的图形,如各种各样的直线形和曲线形,这些图形虽然可以移动和相互变换,但图形本身的结构却是“死”的,即传统几何学是一种静态几何学。几何代数化的出现,使得曲线变成了具有某种特定性质的点的轨迹,即可把曲线看作是由“点”通过运动而生成的,这就使人们对形的认识由静态发展到了动态

2.为代数学研究提供了新的工具

几何代数化不仅直接影响和改造了传统的几何学,扩大了几何学的研究对象,丰富和发展了几何学的思想方法,而且也使代数学获得了新的生命力。(www.xing528.com)

首先,几何学的概念和术语进入代数学,使许多代数课题具有了直观性。我们知道,和几何学相比,代数学具有更高的抽象性,许多抽象的代数式和方程使人难以把握它们的现实意义。几何代数化的出现,为抽象的代数式和方程提供了形象而直观的模型。如可把方程的解看作是曲线的交点的坐标,可把二次方程根与系数关系的研究转化为考察和分析圆锥曲线坐标轴的相对位置。

其次,几何学思想方法向代数学的移植和渗透,开拓了代数学新的研究领域。如以线性方程(一次方程)为主要对象的线性代数,就是在线性空间概念的基础上构造起来的,这里的“线性”、“空间”等概念并不是代数学本身所固有的,而是从几何学中借用的。

3.为微积分的创立准备了必要条件

几何代数化思想形成的标志是解析几何的创立,笛卡儿在创立解析几何过程中,不仅提出了代数与几何相结合的思想,而且把变数引进了数学。变数的引进,对于数学的发展有着极为重要的意义,特别是为微积分的创立准备了重要工具,加速了微积分形成的历史进程。从这种意义上看,可把解析几何的产生看作是微积分创立的前奏。对此,恩格斯曾高度评价:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了”。

4.为数学的机械化证明提供了重要启示

定理的机械化证明,是现代数学新兴的一个研究领域,从机械化算法上看,它的方法论基础是利用代数方法把推理程序机械化。因此,定理机械化证明的思想渊源可追溯到几何的代数化。

此外,几何代数化的思想还给数学研究从方法论上提供了许多重要启示。如数学家们把点与数对、曲线与方程相对应的思想加以发展,提出了函数与点、函数集与空间相对应的思想,在此基础上进而创立了泛函分析这一新的理论。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈