首页 理论教育 光子学设计基础:材料色散解析

光子学设计基础:材料色散解析

时间:2023-11-20 理论教育 版权反馈
【摘要】:在本书4.3节曾经介绍过材料色散的一些细节,正如当时所述,由于原子谐振的结构,使光学材料的折射率随波长变化。很明显,表示材料特性,硅材料的该特性随λ的变化如图8.17所示。图8.17硅材料的色散“零”为了充分利用该波长下具有最大带宽的优点,还必须使光源的光谱带宽δλ最小。能够达到的最佳状态是保证在光谱中心λ0或附近为零。由图8.17所示可以看出,在零点附近1nm范围内的平均材料色散约为3ps/。

光子学设计基础:材料色散解析

在本书4.3节曾经介绍过材料色散的一些细节,正如当时所述,由于原子谐振的结构,使光学材料的折射率随波长变化。

注意到,折射率随波长的变化形成不同于相速的群速,由下式表示:

978-7-111-39953-7-Chapter08-63.jpg

其中各变量满足下面关系式:

978-7-111-39953-7-Chapter08-64.jpg

式中,n为材料的折射率,所以上式可以转换为

978-7-111-39953-7-Chapter08-65.jpg

式中,cg为光能量的传播速度。

显然,在光源光谱范围内,cg不再是一个常数,除非dn/dk在该范围内是一个常数(也就是说,除非n是波长的线性函数),否则光源光谱的不同部分将以不同的速度传播。在其他效应中,这将使光学脉冲加宽。

群速为cg,能量传输距离为L时所花费的时间为

978-7-111-39953-7-Chapter08-66.jpg

因此,一个宽度为δω的光源光谱的时间范围为

978-7-111-39953-7-Chapter08-67.jpg

k=2π=nω/c0,所以也可以表示为

978-7-111-39953-7-Chapter08-68.jpg(www.xing528.com)

式中,(d2n/dλ2λ是(d2n/dλ2)在波长λ时的值。在此注意到,B≈1/Δτ,所以有:

978-7-111-39953-7-Chapter08-69.jpg

若光源和材料一定,该式是个常数。

为了使带宽与距离的乘积有最大值,d2n/dλ2λ和δλ要尽可能小。很明显,(λ/c0)(d2n/dλ2)(在波长λ处)表示材料特性,硅材料的该特性随λ的变化如图8.17所示。

由该图看出,在波长1.28μm处d2n/dλ2=0。

由此得出结论:这是硅材料光纤中具有最大带宽的最佳波长。特别幸运的是,该波长对应着硅材料吸收光谱中的最小值(见图8.13),因此在此波长下还有低的衰减。上述两个因素的综合考虑导致了20世纪80年代单模光纤通信技术的快速发展。

978-7-111-39953-7-Chapter08-70.jpg

图8.17 硅材料的色散“零”

为了充分利用该波长下具有最大带宽的优点,还必须使光源的光谱带宽δλ最小。此项要求已经导致研发具有较高功率(约100nW)的窄带(约0.1nm)半导体激光光源。最近,已经研发出光纤激光器

当然,在光源的整个带宽范围内,d2n/dλ2并不是零。能够达到的最佳状态是保证在光谱中心λ0或附近为零。

将一些典型的数据代入公式,可以更深刻地感受其实用性。

假设,光源是波长范围约1nm的半导体激光器。由图8.17所示可以看出,在零点(1.28μm)附近1nm范围内的平均材料色散约为3ps/(nm·km)。

因此,Δτ≈3×10-12/km,或者BL≈330Gb·km/s。

例如,线路长度为100km,则带宽是3.3Gb/s。这是一个非常期望的带宽,但是在这种距离下有希望做得更好些。最明显的改进方法是进一步将光源的光谱带宽降低到约0.1nm,在同样的距离范围内就有可能得到33Gb/s的带宽。然而,不要满足于此,与单模光纤相关的还有另外的色散源,就是波导色散。下面就讨论这方面的内容。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈