不同进位计数制之间的转换,实质上是基数间的转换。各数制之间进行转换时,通常对整数部分和小数部分分别进行转换,然后将其转换结果合并即可。
非十进制数转换成十进制数的方法是:把各个非十进制数按以下求和公式展开求和即可。
(F)x=a 1×x n-1+a 2×x n-2+…+a m-1×x 1+a m×x 0+a m+1×x x-1+…
式中,a 1,a 2,a m-1,a m为系数;x为基数;n为项数。
例如:
(100.101)B=1×2 2+0×2 1+0×2 0+1×2(1+0×2(2+1×2(3=(4.625)D
(63.56)O=6×8 1+3×8 0+5×8(1+6×8(2=(51.71875)D
(28.3C)H=2×16 1+8×16 0+3×16(1+12×16(2=(40.234375)D
2.十进制数转换为非十进制数
方法:整数部分采取“除X取余法”,从下往上取;
小数部分采取“乘X取整法”,从上往下取。
例如:将十进制数358.375转换为二进制数,R取2。
因为(358)D=(101100110)B,(0.375)D=(0.011)B;
所以,将整数和小数合并在一起,(358.375)D=(101100110.011)B。
具体步骤如表1-2所示。
表1-2 整数部分与小数部分的转换表
注意:十进制转换为八进制、十六进制的方法与十进制转换为二进制的方法类似。
◆十进制整数→八进制方法:“除8取余”;
◆十进制整数→十六进制方法:“除16取余”;
◆十进制小数→八进制小数方法:“乘8取整”;
◆十进制小数→十六进制小数方法:“乘16取整”。
3.二进制、八进制、十六进制之间的转换
(1)二进制与八进制之间的转换
二进制数转换为八进制数的方法是以小数点为界,分别向左或右将每三位二进制数合成为一位八进制数即可。如果不足三位,可用零补足。
反之,八进制数转换为二进制数,将每一位八进制数展成三位二进制数即可。
例如:(www.xing528.com)
10100101.11011)B=(010 100 101.110 110)B=(245.65)O
(120.45)O=(001 010 000.100 101)B
(2)二进制与十六进制之间的转换
二进制数转换十六进制数的方法是以小数点为界,分别向左或右将每四位二进制数合成一位十六进制数即可。如果不足四位,可用零补足。
反之,十六进制数转换为二进制数,将每一位十六进制数展成四位二进制数即可。
例如:
(11010101.01101)B=(1101 0101.0110 1000)B=(D5.68)H
(A1D.9F)H=(1010 0001 1101.1001 1111)B
4.二进制的运算规则
二进制的运算有算术运算和逻辑运算两种。
(1)算术运算:二进制数的算术运算有加法、减法、乘法和除法
加法规则:0+0=0 0+1=1 1+0=1 1+1=10
减法规则:0-0=0 1-1=0 1-0=1 10-1=1
乘法规则:0×0=0 0×1=0 1×0=0 1×1=1
除法规则:0÷0=0 0÷1=0 1÷0(无意义)1÷1=1
(2)逻辑运算:“或”运算、“与”运算和“非”运算3种
◆“或”运算规则如下:
0+0=0 0+1=1 1+0=1 1+1=1
0∨0=0 0∨1=1 1∨0=1 1∨1=1
◆“与”运算规则如下:
0×0=0 0×1=0 1×0=0 1×1=1
0∧0=0 0∧1=0 1∧0=0 1∧1=1
0·0=0 0·1=0 1·0=0 1·1=1
◆“非”运算规则如下:
0-=1 1-=0
虽然计算机内部均用二进制(0和1)来表示各种信息,但计算机与外部交换信息仍采用人们熟悉和便于阅读的形式,如十进制数据、文字显示以及图形描述等,其相互间的转换,则由计算机系统的硬件和软件来实现。在计算机内部,信息的表示依赖于机器硬件电路的状态,信息采用什么表示形式,将直接影响计算机的结构与性能。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。