例4.36(江苏省2002年竞赛题) 函数f(x,y)=2x-y+1满足方程x2+y2=5的条件极大值为_________,条件极小值为________.
解析 应用拉格朗日乘数法,令
F=2x-y+1+λ(x2+y2-5)
由方程组
解得驻点为(-2,1),(2,-1),对应的函数值为-4,6,所以条件极大值为6,条件极小值为-4.
例4.37(江苏省1994年竞赛题) 椭球面x2+2y2+4z2=1与平面x+y+z-=0之间的最短距离为_________.
解析 设椭球面上的点P(x,y,z)到平面的距离为d,则
应用拉格朗日乘数法,令
由方程组
解得驻点这两点到平面的距离d分别是故最小距离为
例4.38(江苏省1994年竞赛题) 已知a,b满足求曲线y=x2+ax与直线y=bx所围区域的面积的最大值与最小值.
解析 因为(www.xing528.com)
故a2+b2=1.曲线y=x2+ax与直线y=bx所围图形的面积为
应用拉格朗日乘数法,令
由方程组
解得驻点此时S=又a=0时b=1,此时S=;a=-1时b=0,此时S=所以所求面积的最大值为最小值为
例4.39(江苏省2008年竞赛题) 已知曲面4x2+4y2-z2=1与平面x+y-z=0的交线在xy平面上的投影为一椭圆,求此椭圆的面积.
解析 方法1 椭圆的方程为3x2+3y2-2xy=1.椭圆的中心在原点,在椭圆上任取一点(x,y),它到原点的距离
令F=x2+y2+λ(3x2+3y2-2xy-1),则
由上(1)和(2)两式推得y=x或y=-x,故驻点为
因此d(P1)=d(P2)=,d(P3)=d(P4)=分别为椭圆的长、短轴,于是椭圆的面积为
方法2 椭圆的方程为3x2+3y2-2xy=1.椭圆的中心在原点,作坐标系的旋转变换,令代入椭圆方程得2u2+4v2=1,因此a=分别为椭圆的长、短轴,于是椭圆的面积为
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。