首页 理论教育 水生动物的水平衡适应及陆生动物的失水适应

水生动物的水平衡适应及陆生动物的失水适应

时间:2023-11-09 理论教育 版权反馈
【摘要】:水生动物保持体内的水平衡是依赖于水的渗透调节作用,陆生动物则依靠水分的摄入与排出的动态平衡,从而形成了生理的、组织形态的及行为上的适应。解决这一问题的机制是靠渗透调节,渗透调节是控制生活在高渗与低渗环境中的有机体体内水平衡及溶质平衡的一种适应。如鲲鲸科中的蓝鲸,是已知动物中个体最大的,最大质量达150吨,身长达30米,使陆生动物相形见绌。骆驼动物减少失水的适应形式表现在很多方面。

水生动物的水平衡适应及陆生动物的失水适应

动物植物一样,必须保持体内的水平衡才能维持生存。水生动物保持体内的水平衡是依赖于水的渗透调节作用,陆生动物则依靠水分的摄入与排出的动态平衡,从而形成了生理的、组织形态的及行为上的适应。

水生动物

水生动物,当它们体内溶质浓度高于环境中的时候,水将从环境中进入机体,溶质将从机体内出来进入水中,动物会“涨死”;当体内溶质浓度低于环境中时,水将从机体进入环境,盐将从环境进入机体,动物会出现“缺水”。解决这一问题的机制是靠渗透调节,渗透调节是控制生活在高渗与低渗环境中的有机体体内水平衡及溶质平衡的一种适应。

淡水鱼种

淡水鱼类:淡水水域的盐度在0.02‰~0.5‰之间,淡水硬骨鱼血液渗透压(冰点下降Δ-0.7℃)高于水的渗透压(Δ-0.02℃),属于高渗性的。因此,当鱼呼吸时,大量水流流过鳃,水通过鳃和口咽腔扩散到体内,同时体液中的盐离子通过鳃和尿可排出体外。进入体内的多余水,通过鱼的肾排出大量的低浓度尿,保持体内的水平衡。因此,淡水硬骨鱼的肾发育完善,有发达的肾小球,滤过率高,一般没有膀胱,或膀胱很小。丢失的溶质可从食物中得到,而鳃能主动从周围稀浓度溶液中摄取盐离子,保证了体内盐离子的平衡。

海洋鱼类:海水水域的盐度在3.2%~3.8%范围内,平均为3.5%,渗透压为Δ-1.85℃。海洋硬骨鱼血液渗透压为Δ-0.80℃,与环境渗透压相比是低渗性的,这导致动物体内水分不断通过鳃外流,海水中盐通过鳃进入体内。海洋硬骨鱼的渗透调节需要排出多余的盐及补偿丢失的水:它们通过经常吞海水补充水分,同时排尿少,以减少失水,因而它们的肾小球退化,排出极少的低渗尿,主要是二价离子Mg2+img;随吞海水进入体内多余盐靠鳃排出体外。

海洋中还生活着一类软骨鱼,其血液渗透压为Δ-1.95℃,与环境相比基本上是等渗的。海洋软骨鱼体液中的无机盐类浓度与海洋硬骨鱼相似,其高渗透压的维持是依靠血液中储存大量尿素和氧化三钾胺。尿素本是蛋白质代谢废物,但在软骨鱼进化过程中,被作为有用物质利用起来。然而尿素使蛋白质和酶不稳定,氧化三钾胺正好抵消了尿素对酶的抑制作用。最大的抵消作用出现在尿素含量与氧化三钾胺含量为2∶1时,这个比例数字通常正好出现在海洋软骨鱼中。海洋软骨鱼血液与体液渗透压虽与环境等渗,但仍然有有力的离子调节,如血液中Na+浓度大约为海水的1/2。排出体内多余Na+主要靠直肠腺,其次是肾。

广盐性洄游鱼类:洄游性鱼类来往于海水与淡水之间,其渗透调节具有淡水硬骨鱼与海水硬骨鱼的调节特征:依靠肾调节水,在淡水中排尿量大,在海水中排尿量少,在海水中又大量吞水,以补充水;盐的代谢依靠鳃调节:在海水中鳃排出盐,在淡水中摄取盐。

水的密度大约是空气密度的800倍,因此水的浮力很大,对水生动物起了支撑作用,使水生动物可以发展成庞大的体形及失去陆地动物的四肢,它们利用水的密度推进自己身体前移。如鲲鲸科中的蓝鲸,是已知动物中个体最大的,最大质量达150吨,身长达30米,使陆生动物相形见绌。很多鱼具有鱼鳔,通过鱼鳔充气调节鱼体的密度。在上层水中时,鱼鳔中充气多,使鱼身体密度小,利于漂浮,当鱼下沉中层水时,鳔中气体减少,身体密度加大。

蓝 鲸(www.xing528.com)

由于水的密度大,水深度每增加10米,就增加101千帕或1标准大气压,水下50米深度的水层静水压力即为6标准大气压(加水表面的1标准大气压)。适应深海高压环境的鱼类,由于体内也受同样的压力,从深海提升到水面,会因压力迅速改变而死亡,它们皮肤组织的通透性很大,骨骼和肌肉不发达,没有鳔。肺呼吸动物如海豹与鲸,能在深海中潜泳是因为它们具有相适应的身体结构:它们的肋骨无胸骨附着,有的甚至无肋骨,缺少中央腱的肌膈膜斜置于胸腔内。当潜入深海中时,海水高压可把胸腔压扁,肺塌瘪,使肺泡中气体全部排出,导致血液中无溶解氮气。当从深水中迅速回到水面时,不会因为血液中溶解的大量氮气由于迅速减压而沸腾形成如同人类的潜涵病(减压病)。

陆生动物

有机体在陆地生存中面对的最严重问题之一是连续地失水(皮肤蒸发失水、呼吸失水与排泄失水),使有机体有可能因失水而干死,因而陆生动物在进化过程中形成了各种减少失水或保持水分的机制。脊椎动物羊膜卵的产生就代表了一种机制,使脊椎动物在发育过程中能阻止水的丢失,而允许脊椎动物去开拓陆地。

陆生动物要维持生存,必须使失水与得水达到动态平衡。得水的途径可通过直接饮水,或从食物所含水分中得到水。有的动物如蟑螂蜘蛛昆虫类通过体表可直接从较潮湿的大气中吸水。各种物质氧化产生的代谢水(如100克脂肪氧化产生110克水,100克糖类氧化产生55克水),也是重要的获水途径,这对生活在荒漠中和缺水环境中的动物是重要的水源。荒漠中生活的大动物如骆驼,与荒漠中生长的树形仙人掌在水收支平衡中有相似处。当能得到水时,它们都取得大量水,储存并保持着。骆驼一次可饮水和储存水达体重的1/3,在酷热的荒漠中不饮水可存活很长时间,此时依赖于组织中储存的水,能忍受占体重20%的失水率,而自己没有受到伤害(人失水10%~12%就接近死亡限)。但也有学者认为,骆驼并不储水,每次饮水只是补充了体内丢失的水。

骆 驼

动物减少失水的适应形式表现在很多方面。首先是减少蒸发失水。随着动物呼吸,大量的水分在呼吸系统潮湿的交换表面上丢失。大多数陆生动物呼吸水分的回收包含了逆流交换的机制,即当吸气时,空气沿着呼吸道到达肺泡的巨大表面积上,使空气变成饱和水蒸气;而呼出气在通过气管与鼻腔时,随着外周体温的逐渐降低,呼出气的水汽沿着呼吸道表面凝结成水,使水分有效地返回组织,减少呼吸失水。因此,呼出气温度越低,机体失水越少。这对生活在荒漠中的鸟兽是一种重要的节水适应机制。如荒漠中啮齿类动物形成狭窄的鼻腔,使鼻腔表面积增大,降温增多,失水减少;在干燥荒漠气候中的骆驼,通过逆流交换回收了呼出气全部水分的95%。而昆虫通过气孔的开放与关闭,可使失水量相差数倍。除此以外,栖息在干燥环境中的节肢动物体表厚厚的角质层及其上面的蜡膜,以及爬行动物体表的鳞片都阻碍体表水的蒸发。

陆生动物在蛋白质代谢产物的排泄上也表现出陆地适应性。如鱼类主要以氨形式排出,氨是蛋白质最终产物,排氨节省能量,但排氨消耗水量大,排1克氨需水300~500毫升。陆生动物中两栖类、兽类排泄尿素,爬行类、鸟类及昆虫排尿酸。排泄1克尿素与尿酸,需水量分别为50毫升及10毫升,显示出排泄尿素与尿酸是对陆地环境减少失水的一种成功的适应性。

陆生动物还通过行为变化适应干旱炎热的环境,如荒漠地带的鼠类、蝉与昆虫,白天温度高而干燥时,它们呆在潮湿的地洞中,夜间气温较为凉爽,它们才到地面活动觅食。在有季节性降雨的干热地区,动物会出现夏眠,如黄鼠、肺鱼,在夏眠时体温大约平均下降5℃,代谢率也大幅度下降,从而度过干热少雨时期。昆虫的滞育也是对缺水环境的一种适应性表现。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈