首页 理论教育 严谨治学,致力于几何学发展的欧几里得

严谨治学,致力于几何学发展的欧几里得

时间:2023-11-06 理论教育 版权反馈
【摘要】:足见,欧几里得治学严谨,反对不肯刻苦钻研投机取巧的思想作风。欧几里得的 《几何原本》正是在这样一个时期,继承和发扬了前人的研究成果,取之精华汇集而成的。在这之前,毕达哥拉斯派也有比例论,但并不适用于不可公度的量的比,欧几里得为了摆脱这一困境,在这里叙述了欧道克索斯的比例论。这也是欧氏《几何原本》对几何学发展作出的重大贡献。

严谨治学,致力于几何学发展的欧几里得

言传身教

欧几里得大约生于公元前325年,他是古希腊数学家,他的名字与几何学结下了不解之缘,他因为编著 《几何原本》而闻名于世,但关于他的生平事迹知道的却很少,他是亚历山大学派的奠基人。早年可能受教于柏拉图,应托勒密王的邀请在亚历山大授徒,托勒密曾请教欧几里得,问他是否能把证明搞得稍微简单易懂一些,欧几里得顶撞国王说:“在几何学中是没有皇上走的平坦之道的。”他是一位温良敦厚的教育家。

另外有一次,一个学生刚刚学完了第一个命题,就问:“学了几何学之后将能得到些什么?”欧几里得随即叫人给他三个钱币,说:“他想在学习中获取实利。”足见,欧几里得治学严谨,反对不肯刻苦钻研投机取巧的思想作风。

在公元前6 世纪,古埃及、巴比伦的几何知识传入希腊,和希腊发达的哲学思想,特别是形式逻辑相结合,大大推进了几何学的发展。在公元前6世纪到公元前3世纪期间,希腊人非常想利用逻辑法则把大量的、经验性的、零散的几何知识整理成一个严密完整的系统,到了公元前3 世纪,已经基本形成了 “古典几何”,从而使数学进入了 “黄金时代”。柏拉图就曾在其学派的大门上书写大型条幅 “不懂几何学的人莫入”。欧几里得的 《几何原本》正是在这样一个时期,继承和发扬了前人的研究成果,取之精华汇集而成的。

《几何原本》

欧氏《几何原本》推论了一系列公理、公设,并以此作为全书的起点。共13卷,目前中学几何教材的绝大部分都是欧氏《几何原本》的内容。勾股定理在欧氏 《几何原本》中的地位是很突出的。在西方,勾股定理被称作毕达哥拉斯定理,但是追究其发现的时间,在我国和古代的巴比伦、印度都比毕达哥拉斯早几百年,所以我们称它勾股定理或商高定理。在欧氏《几何原本》中,勾股定理的证明方法是:以直角三角形的三条边为边,分别向外作正方形,然后利用面积方法加以证明,人们非常赞同这种巧妙的构思,因此目前中学课本中还普遍保留这种方法。

据说,英国哲学家霍布斯一次偶然翻阅欧氏的《几何原本》,看到勾股定理的证明,根本不相信这样的推论,看过后十分惊讶,情不自禁地喊道:“上帝啊,这不可能”,于是他就从后往前仔细地阅读了每个命题的证明,直到公理和公设,最终还是被其证明过程的严谨、清晰所折服。(www.xing528.com)

欧氏《几何原本》的部分内容与早期智人学派研究三个著名几何作图问题有关,特别是圆内接正多边形的作图方法。欧氏的《几何原本》只把用没有刻度的直尺画直线,用圆规画圆列为公理,限定了“尺规”作图。于是几何作图就出现了“可能”与“不可能”的情况。在这里欧几里得只给出了正三、四、五、六、十五边形的做法,加上连续地二等分弧,可以扩展到正2n、3 (2n)、5 (2n)、15 (2n)边形。因此,我们可以想象欧几里得一定还尝试过别的正多边形的作图方法,只是没有作出来而已。所以欧氏《几何原本》问世后,正多边形作图引起了人们的极大兴趣。

欧氏《几何原本》中的比例论,是全书的最高成就。在这之前,毕达哥拉斯派也有比例论,但并不适用于不可公度的量的比,欧几里得为了摆脱这一困境,在这里叙述了欧道克索斯的比例论。定义了两个比相等即定义了比例,适用于一切可公度与不可公度的量,它挽救了毕氏学派的相似形等理论,是非常重要的成就。

据说有一位捷克斯洛伐克牧师布尔查诺,在布拉格度假时,突然间生了病,浑身发冷,疼痛难耐。为了分散注意力便拿起了欧氏的 《几何原本》,当他阅读到比例论时,即被这种高明的处理所震撼,无比兴奋以致完全忘记了自己的疼痛。事后,每当他的朋友生病时,他就推荐其阅读欧氏《几何原本》的比例论。

欧氏《几何原本》吸取了泰勒斯和柏拉图的演绎证明和演绎推理,完整的体现了亚里士多德的数学逻辑思想,成为公理化方法建立演绎体系的最早典范,更是数学逻辑思维训练的最好教材。但是,它在某些方面还存在着逻辑上的缺陷,并曾经引发了数学史上著名的 “第五公设试证”活动,19世纪初因此而诞生了罗巴切夫斯基几何。罗氏几何的诞生,打破了欧氏几何一统空间的观念,促进了人类对几何学广阔的领域作进一步的探讨。随后,展开了大规模的欧氏《几何原本》公理系统的逻辑修补工作。德国数学家希尔伯特,用近代的观点集修补之精华,在1879年发表了 《几何基础》,提出了欧氏几何一个完整的简洁的公理系统,使欧氏几何达到了高度的抽象化、逻辑化、数学化,把公理化方法推向了现代化,建立起了一种统一的公理体系。

这也是欧氏《几何原本》对几何学发展作出的重大贡献。欧氏《几何原本》一出世就迅速而且彻底地取代了在它之前的一切同类型著作,甚至使它们就此销声匿迹。

最早的中译本是1607年(明代万历35年)由意大利传教士利玛窦徐光启合译出版的,只译了15卷本的前6卷,它是我国第一部数学翻译著作。取名为 《几何原本》,中文“几何”的名称就是从这里开始的。而后9卷的引入是在两个半世纪后的1857年由清朝的学者李善兰和英国人韦列亚力翻译补充的。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈