首页 理论教育 每日数独:基本技巧掌握

每日数独:基本技巧掌握

时间:2023-11-04 理论教育 版权反馈
【摘要】:因为这个技巧对于宫内进行排除,所以称为宫排除法。这个技巧称为行区块。唯一余数唯一余数是另一种得到数字的技巧。割补法割补法,是借助于另外一种变型数独“锯齿数独”而产生的数独观察技巧。这个技巧称为隐性数对,因为数对的存在是“隐性”的,它需要提示数作出排除后才会发现,它是隐藏在盘面之中的。

每日数独:基本技巧掌握

当然了,不靠一些数独技巧也是无法完成题目的,所以这里简单介绍一些数独技巧,帮助你完成后面的一些题目。

排除

宫排除

如图所示,我们可以观察到,数字6在第2个宫内,填数的位置只有唯一一处。根据数独规则,“每一行、每一列、每一个宫内的填数必须是数字1到9,没有重复的数字出现”。所以我们可以观察到,A4和A5两处明显是不可以填入6的,否则A行内就会出现两个6,违背数独规则;同理,C4和C5也是一样。

因此,根据这样的要求,我们发现,第2个宫内,填入6的位置只有C6可以,所以C6一定填入6。

因为这个技巧对于宫内进行排除,所以称为宫排除法。

在观察宫排除时,我们只需要忽略其他的数字,然后逐个从数字1到数字9进行观察即可。对于初学而言,建议从数字1到数字9的顺序(或是从数字9到数字1)挨个查找宫排除。

行/列排除法

除了宫排除外,还有对行和列作排除的技巧。

如图所示,我们发现第4列,填入4的位置只有E4一处,而C4和G4都不能填入4,否则对应行上会有两处4,产生重复。

当然,也存在行排除技巧。不过这里不给予示例,请自行观察和寻找。

区块

行列排除不好观察,所以我们可能会采用一种名为区块的技巧来代替一部分行/列排除。区块同排除一样,分宫区块和行/列区块。

宫区块

如图所示,观察第4个宫,我们发现4只能填入到D1或D2。虽然具体我们确定不下来,但我们可以确定的是,D1和D2内有一个单元格一定是填4的。而恰好,它们又刚好同一行,所以D行内其余位置都不能填入4。

于是我们观察第6个宫(或观察第9列),我们发现4只能填入到F9之中。所以F9应填4。

这样的宫排除比较起行列排除来说,要轻松一些。我们称,类似于“D1和D2内一定有一格填4”这样的结构为区块。因为结构是从宫内推导得到的,所以称为宫区块。

行/列区块

有宫区块,就一定存在行/列区块。

如图所示,观察E行,我们发现,E行能够填入数字9的位置,只有E7和E9。

而我们发现,E7和E9内恰有一格填入数字9,而它们又刚好同一个宫,所以第6个宫内的其余位置都不可以填入数字9。

于是观察第7列,由于9不能填入D7,所以数字9只能填入到E7了。

这个技巧称为行区块。因为区块产生于行内。不过,这样的结构依然是比较难观察到。所以,我们还有比它规模更大一些的区块,它的视角会更轻松一些。

级联区块

如图所示,我们可以观察到,第1列和第5列,填入5的位置恰好只有A1、A5、C1和C5(AC15)四格。

这两个区块,能够表示AC1内只有一格是5;AC5内也是一样。那么,我们可以清楚地了解到,这样两个区块恰好可以构成一个长方形的形状,所以5的填数位置是错开的。也就是说,如果A1是5的话,那么右边的区块内,只能是C5是5;换过来,C1是5的话,右边的区块内A5是5。

不论如何,A行和C行内,这四格之中必有填入5的位置,所以A行和C行之中,其余位置都不可能是5,否则必然会有数字5重复的情况发生。所以,A8自然就不能是5了。

于是,我们发现,第8列内,填入5的位置只能是B8。所以B8是5。

这种区块有一点点难受的地方在于结构可能是产生于行列的。不过,这样的结构往往都有与之互补的区块,比如下面这样:

它和前面一题是一样的,不过换了个角度。观察第5、8两个宫,可以发现5的填数位置形成了区块,位于D4、D6、H4和H6(DH46)四格。

所以根据B行的排除法,可以发现5的填数位置只有一处。

不过,你可以看到,这样的区块其实只需要一个行/列区块就可以搞定,这样组合起来看,只是为了观察的方便。

唯一余数

唯一余数是另一种得到数字的技巧。

如图所示,当排除法不好用的时候,我们可以尝试观察唯一余数。

我们发现,G9单元格只可能填入4。原因在于,G9所在的行、列、宫内,恰好存在1、2、3、5、6、7、8、9,就只有数字4没有出现。

如果填入这些数,显然会重复。所以只能让G9填入4。(www.xing528.com)

这个技巧称为唯一余数,简称唯余。

割补法

割补法,是借助于另外一种变型数独“锯齿数独”(接下来会介绍到)而产生的数独观察技巧。所有这样的技巧都能被改写为区块技巧或接下来要介绍的“数组”技巧的观察,不过由于割补法的存在,这样的区块就会较为容易地被观察出来。

如图所示,观察第4个宫和D行,因为这两个区域内,都必须有1到9各一次,而它们还具有D1、D2和D3三格是“共用”部分。所以,我们可以知道一点,D4、D5、D6、D7、D8和D9(D456789)这六格和E1、E2、E3、F1、F2和F3(EF123)这六格的填数必然是一样的。

可以观察到,D456789中有四个数,EF123中也有两个数,它们恰好不重复,也恰好是六个数。那么我们可以直接知道,D456789和EF123内一定都是数字1、3、4、5、7、8。

随即观察第7列,数字9的填数位置只有F7可填。E7不能填9的原因是,在第5个宫内,9形成区块,E4、E5和E6之中有一格是9,所以E行内不能再填9。

数对

隐性数对

如图所示,我们可以直接观察到,数字3和数字8在第1个宫的填数情况都只有同样的两格:B12。因为我们可以直接找到旁边的一簇3和8的提示数的排除,发现到这一点。

因为3和8这两个数字都恰好只能填入到B12两格之中,所以这两格一定是3和8,别无其他。

于是,观察第1列,数字9的填数位置就只剩下H1。所以H1是9。

这个技巧称为隐性数对,因为数对的存在是“隐性”的,它需要提示数作出排除后才会发现,它是隐藏在盘面之中的。而这里的3和8,我们可以说,它们是一个数对。

显性数对

有隐性数对,就有显性数对。

如图所示,观察第9列,发现C9只可能填入数字6和8;而恰好,同样位于第9列的F9,也只可能填入6和8。所以,CF9这两格的填数只能是“此6彼8”或“此8彼6”的状态。但是不论是哪种情况,因为6和8被确定下来在CF9两格,所以第9列其余位置肯定都不会是6和8了。不然的话,一定会有一个数和这两格的填数有重复。

随即观察第9个宫。发现根据如此得到的结论后,数字6只能填入到H7,所以H7一定填6。

这个技巧称为显性数对,因为数对是直接裸露存在的,通过类似唯一余数的数数方式,就可以直接看到它们。

说起简单,使用起来可没有那么简单。所以以后还需要多加练习,巩固这些数独技巧。这些技巧也就是数独里最为基础的技巧,不论是标准还是变型数独题,这些技巧都是存在的。

数组简介

当然了,有没有办法将数对进行推广呢?当然是有的,数对大致指的是“一个区域下,只有两格填入两种不同数字”的情况,那么将其推广,就只需要修改里面的“两”字:

一个区域下,只有n格填入n种不同数字的情况。

这种说法我们称之为数组(或链数),其中n为2的时候叫做数对(或二数组、二链数);n为3的时候,叫三数组(或三链数);n为4的时候叫四数组(或四链数)。

这就是数组的基本描述。不过这种东西在一定程度上是比较难观察到,并且难理解。所以本书不着重讲解这一点。你只需要了解即可[3],以便后续提到类似的东西时,可以马上了解到它。这里给出一个示例帮助你理解数组。

隐性三数组

如图所示,可以观察E行,发现2、4、8的填数位置只可能在E347三个单元格。很显然,数字2、4、8只可能填入到这三格的话,那这三格就一定是2、4、8,别无其他。

再次观察E行,发现数字3的填数位置只剩下E9。所以E9一定是3。

显性三数组

如图所示,观察第8个宫,发现G46和H4三个单元格内,只有4、8、9这样三种数字可以填入。试想一下,这样三个单元格同一个宫,并且只有三种不同的数字可以填入进这样三个单元格内,那么不管怎么换着填数,这三格都只可能是4、8、9。

因为这样三格只能是4、8、9[4],所以这一个宫内的其余位置都不能是4、8、9,但凡出现其中一格是4、8、9其一的话,就必然会和这三格内的填数产生重复。

此时观察第5列,发现数字4只有C5唯一一处可以填入。所以,C5一定是4。

总结

标准数独的基础技巧就已经全部介绍完毕了。下面我们来作一个总结,教大家如何观察这些技巧。

排除法,需要你用观察“消消乐”的方式来观察它。在玩消消乐的时候,我们是针对同一种颜色的物件来着重观察的;而排除则是观察同一种数字。排除法仅会涉及同一种数字,所以在观察之中,先看填入的一些数字是否有基础的排除结果,注重观察数字的分布状况,进而得到一些结论;这个时候可以配合一些宫区块来观察。

唯一余数法,这种技巧较为难观察到,由于它的逻辑和排除基本上是可以说“完全相反的”,所以在观察它的时候,就需要切换角度,不能再使用消消乐的眼睛来看它了。这个时候,先纵观整个盘面,有哪些种类的提示数,以便找到一格,比较容易得到唯一余数的结果;其次确定好一些“可能是唯一余数”的位置时,再通过快速的数数操作,确定单元格内填入的数是否真的只有唯一的一种情况。针对于数数操作,你需要多加练习,可以登录这个网站努力练习:http://www.sudokufans.org.cn/finder.php。

数对里,显性数对比隐性数对的观察要难一些,因为显性的思维方式和唯一余数类似;而隐性数对则和排除的思维类似。所以在观察的时候,我们尽量优先观察隐性数对,然后是显性数对的方式来节省时间。在观察数对的时候,我们通常为了快速观察到,一般都是通过分解成两个区块的形式来观察:即先观察到一个a的区块,随后发现b的区块也在a区块所在两格,于是a和b就形成了隐性数对结构。当然,这种结构一般只产生于同宫又同一行/列的情况。较为复杂的结构,就需要使用行/列排除类似的逻辑来找了,不过,也是需要观察两种不同的数字的。

那么,后面就是7个练习题啦(题号300~294),要加油哦!

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈