首页 理论教育 数学起源-揭开数学大厦的集合根基

数学起源-揭开数学大厦的集合根基

时间:2023-11-03 理论教育 版权反馈
【摘要】:康托尔的集合论的建立,不仅是数学发展史上一座高耸的里程碑,甚至还是人类思维发展史上的一座里程碑。震惊之余,数学家们意识到,应当建立某种公理系统来对集合论作出必要的规定,以排除“罗素悖论”和其他有关的“悖论”。

数学起源-揭开数学大厦的集合根基

集合是什么,通俗地说它是一些元素组成的集体,是一些确定而又可分的“物”的集体。集合并不指具体的“物”,而是由物的集体所组成的新对象。20世纪以来的研究表明,不仅微积分的基础——实数理论奠定在集合论的基础上,而且各种复杂的数学概念都可以用“集合”概念定义出来,而各种数学理论又都可以“嵌入”集合论之内。因此,集合论就成了全部数学的基础,而且有力地促进了各个数学分支的发展。现代数学几乎所有的分支都会用到集合这个概念。

集合论最重要的创建者是康托尔(Georg Cantor,1845—1918年)。在19世纪人们很少怀疑微积分的基础应该建立在严密的实数理论上,而严密的实数理论可以由集合论推出。但是微积分本质上是一种“无限数学”。那么无限集合的本质是什么?它是否具备有限集合所具有的性质?从19世纪60年代起,法国数学家康托尔承担了这一工作,他清楚地看到以往数学基础中的问题,都与无穷集合有关。康托尔的集合论的建立,不仅是数学发展史上一座高耸的里程碑,甚至还是人类思维发展史上的一座里程碑。它标志着人类经过几千年的努力,终于基本上弄清了无限的性质,找到了制服无限“妖怪”的法宝。苏联著名数学家柯尔莫戈洛夫说:“康托尔的不朽功绩在于向无限冒险迈进。”德国数学大师伯特赞扬康托尔的理论是“数学思想最惊人的产物,在纯粹理性的范畴中人类活动最美的表现之一”。

然而事情并非总是顺利的。1900年左右,正当康托尔的思想逐渐被人接受,并成功地把集合论应用到了许多别的数学领域中去,大家认为数学的“绝对严格性”有了保证的时候,一系列完全没有想到的逻辑矛盾,在集合论的边缘被发现了。开始,人们并不直接称之为矛盾,而是只把它们看成数学中的奇特现象。1903年英国哲学家兼数学家罗素(Russell,B.A.W,1872—1970年)提出了一个悖论,“一切不包含自身的集合所形成的集合是否包含自身?”答案如果说是,即包含自身,属于这个集合,那么它就不包含自身;如果说否,它不包含自身,那么它理应是这个集合的元素,即包含自身。(www.xing528.com)

可能有人看不懂罗素悖论,没关系,罗素本人就用通俗的“理发师悖论”作了比喻;理发师自称,他给所有自己不刮胡子的人刮胡子,但不给任何自己刮胡子的人刮胡子。试问理发师该不该给自己刮胡子?如果他从来不给自己刮胡子,就属于“自己不刮胡子的人”。根据他的自称,他就应该给自己刮胡子,但是,一旦他给自己刮胡子,他就成了“自己刮胡子的人”了。还是根据他的自称,他就不应该给自己刮胡子。所以不管理发师的胡子由谁来刮,都会产生矛盾。罗素悖论以其简单、明确震动了整个西方数学界和逻辑学界,逻辑学家费雷格收到罗素的信之后,在他刚要出版的《算术基础法则》第二卷末尾写道:“一位科学家不会碰到比这更难甚的事情了,即在工作完成之时,它的基础垮掉了。当这本书等待付印的时候,罗素先生的一封信把我置于这种境地。”弗雷格对罗素悖论的迅速反应是惊恐地感到:“算术开始受难。”

数学史上第三次危机来临了,数学王国的居民们惶惶不安,因为数学家们一贯追求严密性,一旦发现他们自称绝对严密的数学的基础——集合论并不严密,竟然出现了“悖论”这种自相矛盾的结果,可以想像,他们是多么震惊。震惊之余,数学家们意识到,应当建立某种公理系统来对集合论作出必要的规定,以排除“罗素悖论”和其他有关的“悖论”。现在,各种成功地解决悖论的方案都对集合的“无限扩张”进行了限制,因此现在任何一种形式的集合论,实质上都包含一个“限制大小”的公理。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈