今天人们都能用正负数来表示两种相反意义的量。例如若以冰点的温度表示0℃,则开水的温度为+100℃,而零下10℃则记为-10℃。若以海平面为0点,则珠穆朗玛峰的高度约为+8848米,最深的马里亚纳海沟深约-11034米。在日常生活中,人们常用“+”表示收入,用“-”表示支出。可是在历史上,负数的引入却经历了漫长而曲折的道路。
古人在实践活动中遇到了一些问题:如两人相互借用东西,对借出方和借入方来说,同一东西具有不同的意义;再如从同一地点,两人同时向相反方向行走,离开出发点的距离即使相同,但其表示的意义却不同。久而久之,古人意识到仅用数量表示一个事物是不全面的,似乎还应加上表示方向的符号。因此为了表示具有相反意义的量和解决被减数小于减数等问题,逐渐产生了负数。
我国是世界上最早使用负数概念的国家。负数的引进,是中国古代数学家对数学的一个巨大贡献。在我国古代秦、汉时期的算经《九章算术》的第八章“方程”中,就自由地引入了负数,如负数出现在方程的系数和常数项中,把“卖(收入钱)”作为正,则“买(付出钱)”作为负,把“余钱”作为正,则“不足钱”作为负。在关于粮谷计算的问题中,是以益实(增加粮谷)为正,损实(减少粮谷)为负等,并且该书还指出:“两算得失相反,要以正负以名之”。当时是用算筹来进行计算的,所以在算筹中,相应地规定以红筹为正,黑筹为负;或将算筹直列作正,斜置作负。这样,遇到具有相反意义的量,就能用正负数明确地区别了。刘徽在公元263年给《九章算术》加注时,给出了正、负数较确切的定义:“今两算得失相反,要令正负以名之。”这与现今所用定义是完全一致的,可见中国古人对负数认识得何等清楚!
在《九章算术》中,除了引进正负数的概念外,还完整地记载了正负数的运算法则,实际上是正负数加减法的运算法则,也就是书中解方程时用到的“正负术”即“同名相除,异名相益,正无入正之,负无入负之;其异名相除,同名相益,正无入正之,负无入负之。”这段话的前四句说的是正负数减法法则,后四句说的是正负数加法法则。它的意思是:同号两数相减,等于其绝对值相减;异号两数相减,等于其绝对值相加;零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减;同号两数相加,等于其绝对值相加;零加正数得正数,零加负数得负数,当然,从现代数学观点看,古书中的文字叙述还不够严谨,但直到公元17世纪以前,这还是正负数加减运算最完整的叙述。
印度在公元7世纪才采用负数,公元628年,印度的《婆罗摩修正体系》一书中,把负数解释为负债和损失。在西方,直到1484年,法国的舒开才给出了二次方程的一个负根。1544年,德国的史提菲把负数定义为比任何数都小的数。1545年,意大利的卡当著《大法》,成为欧洲第一部论述负数的著作。虽然负数早已出现在人们的计算过程中,但却迟迟得不到学术界的承认,直到17世纪,数学、力学、天文学获得广泛发展,使用负数可以大大简化计算,所以负数才正式进入了数学。特别是1637年,法国数学家笛卡儿发明了解析几何学,建立了坐标点,将平面点与负数、零、正数组成的实数对应起来,使负数得到了解释,从而加速了人们对负数的承认。但直到19世纪,德国数学家魏尔斯特拉斯等人为整数奠定了逻辑基础以后,负数才在现代数学中获得巩固的地位。
直至近代,外国的数学家们对于“中国人毫不费力地就得到负数的概念惊叹不已。负数的概念和运算对中国人好似是轻而易举的,没有感到任何困惑和不解,而世界上其他国家的民族都几乎困惑和曲折,用去了上千年的时日,方才是真正领悟了负数。中国人认识负数比世界上任何一个国家的民族都要早得多。(www.xing528.com)
在欧洲,负数则迟至公元1545年始见于意大利数学家卡丹的《大法》之中。那时大多数欧洲数学家仍认为负数不好理解,不承认负数是数。直到1637年,法国大数学家笛卡儿(RenéDescartes,1596—1655)建立了坐标系,负数有了几何解释,才逐渐被认识。其间仍有人提出“抗议”,还有人提出反对负数的趣说:并列出(-1)/1=1/(-1),指出-1小于+1,那么小数与大数之比怎能等于大数与小数之比呢?
负数概念在欧洲的最终形成和确立,是在19世纪数学科学为整数奠定了逻辑基础以后的事。这种从基础上考虑数的实在性的做法,体现了现代数学的特征。虽然古代的中国、印度数学家为负数的做出巨大的贡献,但真正的数学上给负数以应有地位的是现代欧洲的数学家,其主要代表是德国数学家魏尔斯特拉斯(Karl Weier-strass,1815—1897)、戴德金和皮亚诺。
从上面可以看出,负数的引进,是我国古代数学家贡献给世界数学的一份宝贵财富。
负数概念引进后,整数集和有理数集就完整地形成了。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。