#链关系的定义
数独题目所使用的方法分为四个大类,分别是基础解法(排除、唯一余数法),进阶解法(区块、数对、数组),高级解法(简单的链类结构、鱼类结构、Wing类结构),理论解法(包括但不限于:复杂的链类、鱼类结构和其余结构;对待定数字进行操作的代数思想;提取某些可能性并分类讨论的毛刺思想等)。
本章主要讨论高级技巧。链是高级技巧的核心,由链组成的结构称为链类结构。
先对链做一个简单的定义:链是对于命题之间逻辑关系的描述。当两个命题不能同时为假,命题之间呈强链关系;两个命题不能同时为真,则呈弱链关系,即“强不同假,弱不同真”。
我们通过下面的图示进行说明:
①A1=1和A1=3两个命题,不能同时为真,呈弱链关系。
②D1=4和G1=4两个命题,不能同时为假,呈强链关系。但这两个命题也不能同时为真,因此也呈弱链关系。(图示中仅展现了强链关系)。
③A2=2和A8=2两个命题,不能同时为真,呈弱链关系,但可以同时为假,所以不呈强链关系。
强链与弱链的关系是独立的,两个命题之间可能同时呈现强链和弱链关系,可能呈现其中一种,也可能不呈现任何一种。
链关系是链结构的基础,讨论高级技巧之前,需要链关系的判定进行一定练习。在本书文字及图示中,强链以双线表示,如A==B,弱链以单线表示,如C—D。将涉及的两个命题进行连结,通过阅读文字及图示,对于所涉及的链关系进行分析,是学习链结构非常重要的一环。后文中涉及某单元格等于某数的命题时,如A3=5,会用A3(5)的方法进行表示。
图示练习:
请观察下图,并在空白部分填写各指定命题之间的关系。
①A1(7)、A1(9):_______。
②A1(7)、A5(7):_______。
③A1(7)、A9(9):_______。
④A9(9)、I1(7):_______。
⑤D1(9)、D9(9):_______。
⑥I5(8)、I9(8):_______。
答案:
①强、弱同时呈现
②强、弱同时呈现
③不呈现链关系
④呈现弱链
⑤呈现弱链
⑥呈现弱链
命题之间的链关系观察、理解较难,只有彻底理解链关系的原理,才可对后续的链结构进行理解和研究。
需要注意的是,在基础的链结构中,以强、弱同时呈现的链关系为主,但是往往只使用其中的一种性质。
#基础链结构
前文我们阐述了链关系,本节中我们对链关系进行深入探究。有时候,多个链关系会互相影响、成环,这样的结构叫做链结构。
我们先讨论如下结构,设五个命题A、B、C、D、E,其链关系如下图所示:
我们对这个结构进行研究,结构中A与C、B与D呈强链关系,不同时为假;A与B、C与E、D与E呈弱链关系,不同时为真。
可以这么理解这个结构:若A为真,则B为假,D为真,E为假;若A为假,则C为真,E为假。
也可以这么理解:强链不同假,说明至少有一真;弱链不同真,说明至多有一真。A、C之中至少一个真,B、D之中至少一个真,说明A、B、C、D中至少两个真;而A、B之中至多一个真,因此C、D之中至少一个真,无论哪个真,E都必定不成立。
这种结构是链结构的基础,特征及结论总结如下:
①奇数个命题,通过奇数条链关系两两相连成环。
②这些链关系呈现强、弱、强交错,最终在某个命题两侧均为弱链。
③该命题必定为假。
这一类结构是链结构的核心,以五个命题的结构为主,部分题目中可能涉及七个或更多命题的结构,研习链结构对解题至关重要。
结构分析练习:
设以下八个命题A、B、C、D、E、F、G、H中,有如下强弱链关系存在:(www.xing528.com)
①A=B, D=E。
②A—C, A—H, C—D, B—D, B—F, E—F, E—G, E—H。
试讨论哪个或哪些命题的真假性可以确定。
答案:
H—A=B—D=E—H,由五个命题以强—弱—强的方式连接成环,其中命题H两端都是弱链,因此命题H为假。
#单链结构
单链结构是对某个单一数字进行讨论的链结构,其中涉及的所有命题都关于单元格是否等于该数字。
我们以一道例题进行切入,此题在本书第二章第九节中,作为唯一性解法的例题。利用唯一性解法可回避一些高级技巧,本节先以此题为例,讲解单链结构在解题实战中的观察与应用。
题目如左下图所示,经过基本功处理后如右下图:
观察数字8,D3(8)与D9(8)呈强链关系,G3(8)也与G8(8)呈强链关系,同时D3(8)与G3(8)呈弱链关系。
此时,如果有一个命题E,与D9(8)、G8(8)同时呈弱链关系,我们可以依据上文的结论,证明这个命题E为假。此时,我们注意到I9(8)这个命题,I9与D9、G8都不相同,I9(8)与D9(8)、G8(8)都不能同时为真,因此I9(8)与D9(8)、G8(8)都是弱链关系。通过上文推论,我们可以得到I9(8)为假,故而I9=3(左下图)。
可以总结为:I9(8)—D9(8)==D3(8)—G3(8)==G8(8)—I9(8),故而I9(8)不成立。这条链中所有涉及的单元格都仅讨论同一个数字,因此称为单数链,简称单链。通过单链能解决此题,如右下图所示。
观察单链时,我们只需观察单个数字在题目中的分布。应重点观察当某个数字在某行、列、宫中,只有两个可能位置的情况,并将这些情况加以整合及串联。
寻找单链时,首先寻找强链,一般是某个数字x在某行、列、宫,只可能存在于某两格(A、B),那么A(x)与B(x)构成强链。找到关于x的两条强链后,可以用弱链将其组合为单链,一般分为三种情况:
①两条强链平行,且一侧对齐。
在对齐的一侧中,两端点位于同一行/列,命题呈弱链,如D3(8)—G3(8)。另两个端点中,其中一个所在的行列,与另一个所在的宫交汇的单元格,删减数字x,本题中删减了I9的8,如下图所示。
②两条强链垂直,其中两端点位于同一个宫内。
处于同一宫内的两端点,其命题构成弱链,如G8(8)—I9(8)。与另外两个端点均处于同一行列的单元格删减数字x,如下图中删减D3的8。
③两条强链其一水平/垂直,另一条为斜向,但有一侧对齐。
对齐的两端点,命题呈弱链;与另外两个端点均处于同一行列的单元格删减数字x,如下图中删减D3的8。
单链可视为双节棍,由一条弱链将两条强链进行串联。观察单链是非常困难的,单链的结构也决定着如果一条单链存在,那么必定存在至少一条另外的单链,解题时可以切换视角进行观察,以对单链有更深刻的认识。
通过单链进行删减后,会得到排除解或唯余解,如下图中删减了I9的8,得到唯一余数I9=3,也可得到第九列的8在D9。在一些更复杂的情况下,单链可辅助更多技巧如区块、数对、数组等的形成,再通过这些技巧解答题目。
技巧提炼
单个数字的链结构称为单链。观察时,我们应找到关于数字x的两组强链,并用弱链进行串联,最终删减强链两端共同影响的单元格内的x。
右图中D6(3)=D3(3)—G3(3)=G6(3),删减共同影响的E5、F5、H6、I6格中的3。
14练习
请利用单链解开题目。
★解题要点:(解法不唯一,仅供参考)
第一题
解题要点:数字1的单链,删减E7、E9的1,得到第六宫的1在D8。
第二题
解题要点:数字6的单链,删减I1的6,I1=1。
第三题
解题要点:数字8的单链,删减H2的8,H2=1。
第四题
解题要点:数字9的单链,删减G5的9,G5=1。
第五题
解题要点:数字4的单链,删减D9的4,D9=5。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。