首页 理论教育 最小幻和26627-10阶素数幻方-第一款三十年后制作的

最小幻和26627-10阶素数幻方-第一款三十年后制作的

时间:2023-10-17 理论教育 版权反馈
【摘要】:在这个尼尔逊幻方中的9个连续素数,每个都已经超14.8亿。小约翰逊的连续素数4阶幻方。下面是马达西构造的7阶素数幻方,幻和26 627。日本的寺树周太郎于1979年11月7日构造了世界上第一款10阶连续素数幻方(见下图),由23~593这些连续素数组成,其幻和是2 862。三十年后达州市的数学老师钟明重新制作了一个从7到463的连续素数的其幻和最小的10阶连续素数幻方,幻和是1 591。

最小幻和26627-10阶素数幻方-第一款三十年后制作的

不难看出,以上这些幻方中的素数并不连续,所以人们又开始琢磨能否用9个连续素数构成3阶幻方,难度可想而知,世界数学科普大师马丁·加德纳还曾为此悬赏100美元,奖给首位成功者。这笔奖金最终被一位名叫哈里·尼尔逊(Harry Nelson,1932- )的计算机专家获得,他利用美国加利福尼亚大学的一台克雷公司的超级计算机,通过程序设计攻克了这个难题,而且一次性提供了22个答案。

【例9】在这个尼尔逊幻方中的9个连续素数,每个都已经超14.8亿。

【例10】小约翰逊(Allan W.Johnson,Jr)的连续素数4阶幻方。

马达西撰写数学游戏书和编辑的《娱乐数学杂志》(www.xing528.com)

【例11】约瑟夫·马达西(Joseph Madachy,1927-2014)是数学谜题及数学游戏的专家。1945年二次世界大战结束前服役于美国陆军,有化学学位且从事核研究。他对数字有特殊的癖好,从1961年到1964年,他是《娱乐数学杂志》(Journal of Recreational Mathematics)所有者、出版商和编辑。在娱乐数学方面他做出了大量原始贡献,是几十年来的主要拥护者和支持者。

下面是马达西构造的7阶素数幻方,幻和26 627。

【例12】日本的寺树周太郎于1979年11月7日构造了世界上第一款10阶连续素数幻方(见下图),由23~593这些连续素数组成,其幻和是2 862。三十年后达州市的数学老师钟明重新制作了一个从7到463的连续素数的其幻和最小的10阶连续素数幻方,幻和是1 591。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈