首页 理论教育 圆锥体及其投影形成与取点|建筑制图与识图

圆锥体及其投影形成与取点|建筑制图与识图

时间:2023-10-10 理论教育 版权反馈
【摘要】:1)形成由直角三角形绕其一直角边为轴旋转运动的轨迹称为圆锥体,如图3.7所示。SA称为母线,母线在圆锥面上任一位置称为素线。图3.7圆锥体的形成与投影2)投影安放位置如图3.7所示,将圆锥体的轴线垂直于H面,则底圆平行于H面。3)圆锥表面取点已知圆锥上一点M的V面投影m′(可见),求m及m″,如图3.8所示。图3.8圆锥体表面上取点分析由于m′可见,且在轴o′左侧,可知M点在圆锥面的前、左部分。

圆锥体及其投影形成与取点|建筑制图与识图

1)形成

直角三角形(SAO)绕其一直角边(SO)为轴旋转运动的轨迹称为圆锥体,如图3.7(a)所示。另一直角边(AO)旋转运动的轨迹是垂直于轴的底圆;斜边(SA)旋转运动的轨迹是圆锥面。SA称为母线,母线在圆锥面上任一位置称为素线。圆锥面是无数多条素线的集合。圆锥由圆锥面和底圆围成。锥顶(S)与底圆之间的距离称为圆锥的高。

图3.7 圆锥体的形成与投影

2)投影

(1)安放位置

如图3.7(b)所示,将圆锥体的轴线垂直于H面,则底圆平行于H面。

(2)投影分析[见图3.7(b)]

H面投影:为一个圆。它是可见的圆锥面和不可见的底圆投影的重合。

V面投影:为一等腰三角形。它是可见的前半圆锥和不可见的后半圆锥投影的重合,其对应的H面投影是前、后半圆,对应的W面投影是右、左半个三角形。等腰三角形的底边是圆锥底面的积聚投影;两腰(s′a′和s′b′)是圆锥最左、最右素线(SA和SB)的投影,也是前、后半圆锥的分界线。

W面投影:为一等腰三角形。它是可见的左半圆锥和不可见的右半圆锥投影的重合,其对应的H面投影是左、右半圆;对应的V面投影是左、右半个三角形。等腰三角形的底边是圆锥底圆的积聚投影;两腰(s″c″和s″d″)是圆锥最前、最后素线(SC和SD)的投影,也是左、右半圆锥的分界线。

(3)作图步骤[见图3.7(c)]

①画轴线的三面投影(o,o′,o″),过o作中心线,轴和中心线都画点画线。

②在H面上画底圆的实形投影(以O为圆心,OA为半径);在V面、W面上画底圆的积聚投影。(www.xing528.com)

③画锥顶(S)的三面投影(s,s′,s″,由圆锥的高定s′,s″)。

④画出转向轮廓线,即画出最左、最右素线的V面投影(s′a′和s′b′);画出最前、最后素线的W面投影(s″c″和s″d″)。

3)圆锥表面取点

【例3.4】 已知圆锥上一点M的V面投影m′(可见),求m及m″,如图3.8(a)所示。

图3.8 圆锥体表面上取点

【解】 (1)分析

由于m′可见,且在轴o′左侧,可知M点在圆锥面的前、左部分。由于圆锥面的3个投影都无积聚性,所缺投影不能直接求出,可利用素线法和纬圆法求解。利用素线法,即过锥顶S和已知点M在圆锥面上作一素线S1,交底圆于1点,求得S1的三面投影,则M点的H面、W面投影必然在S1的H面、W面投影上。利用纬圆法,即过M点作垂直于圆锥轴线的水平圆(其圆心在轴上),该圆与圆锥的最左、最右素线(SA和SB)相交于Ⅱ、Ⅲ点,以Ⅱ、Ⅲ为直径在圆锥面上画圆,则M点的H面、W面投影必然在该圆H面、W面投影上,如图3.8(b)所示。

(2)作图[见图3.8(c)]

①素线法:连接s′m′并延长交底圆的积聚投影于1′;由1′向下作垂线交H面投影中圆周于1,连接s1;由m′向下作垂线交s1于m,由Y1和利用“高平齐”关系求得m″。

②纬圆法:过m′作平行于OX轴方向的直线,交三角形两腰于2′,3′,线段2′3′就是所作纬圆的V面积聚投影,也是纬圆的直径;再以2′3′为直径在H面投影上画纬圆的实形投影;由m′向下作垂线,与纬圆前半部分相交于m,由m′,m及Y1得m″。

(3)判别可见性

由于M点位于圆锥面前、左部分,故m,m″均可见。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈