首页 理论教育 中职数学升学考试教程-求圆的方程

中职数学升学考试教程-求圆的方程

时间:2026-01-26 理论教育 小熊猫 版权反馈
【摘要】:考点剖析:了解曲线方程的概念、理解圆的定义、点在曲线上的条件;掌握圆的标准方程,会求圆的标准方程,会将圆的一般方程转化为标准方程,并会求圆的圆心和半径.1.圆的定义:平面内与定点距离等于定长的点的轨迹称为圆,定点为圆心,定长为半径.2.圆的标准方程:设圆心为C(a,b),半径为r,标准方程为(x-a)2+(y-b)2=r2,特别地,当圆心在坐标原点O(0,0)时,圆的标准方程为x2+y2=r2.3

考点剖析:了解曲线方程的概念、理解圆的定义、点在曲线上的条件;掌握圆的标准方程,会求圆的标准方程,会将圆的一般方程转化为标准方程,并会求圆的圆心和半径.

1.圆的定义:平面内与定点距离等于定长的点的轨迹称为圆,定点为圆心,定长为半径.

2.圆的标准方程:设圆心为C(a,b),半径为r,标准方程为(x-a)2+(y-b)2=r2

特别地,当圆心在坐标原点O(0,0)时,圆的标准方程为x2+y2=r2.

3.圆的一般方程:x2+y2+Dx+Ey+F=0,

配方得图示

注:(1)当D2+E2-4F>0,方程表示圆,圆心图示,半径图示

(3)当D2+E2-4F<0时,方程x2+y2+Dx+Ey+F=0不表示任何图形.

【题型1】根据圆的方程求圆的圆心和半径

例1 圆(x-2)2+(y+3)2=16,则圆心为________,半径为________.

解:圆心为(2,-3),半径为4.

例2 若圆的方程是x2+y2+2x-4y-4=0,则圆心为________,半径为________.

解:x2+2x+1-1+y2-4y+4-4-4=0

(x+1)2+(y-2)2=9

所以圆心为(-1,2),半径为3.

赢在起点

1.圆(x+4)2+(y-2)2=25,则圆心为________,半径为________;圆x2+(y+3)2=1,则圆心为________,半径为________;圆x2+y2=7,则圆心为________,半径为________.

2.圆的方程x2+y2+6x-8y=0,则圆心为________;半径为________.

【题型2】判断形如x2+y2+Dx+Ey+F=0的二元二次方程是否表示圆

例 判断方程x2+y2+4x+6y+17=0表示什么图形.

解:x2+4x+22-4+y2+6y+32-9+17=0

(x+2)2+(y+3)2=-4

因为若表示圆则r2>0,而-4<0

所以原方程不表示任何图形.

赢在起点

1.方程x2+y2+4x+6y+10=0表示____________________(图形).

2.方程x2+y2+4x+6y+14=0表示____________________(图形).

【题型3】求圆的方程

例1 已知圆心为(-1,2)的圆经过一点(3,4),求该圆的标准方程.

解:r=图示

圆的标准方程为(x+1)2+(y-2)2=20.

例2 求经过3点A(0,0),B(1,1),C(4,2)的圆的方程.

解:设圆的方程为x2+y2+Dx+Ey+F=0,

则有图示

解得 D=-8,E=6,F=0

故所求方程为x2+y2-8x+6y=0.

例3 求经过点A(1,-1),B(3,1),圆心在y轴上的圆的方程.

解:设圆的圆心坐标为C(0,b),半径为r,则圆的标准方程为x2+(y-b)2=r2

由题意得(1-0)2+(-1-b)2=(3-0)2+(1-b)2

解得b=2,所以圆的圆心C(0,2),

又r2=图示=12+(b+1)2=1+32=10 

则圆的方程为x2+(y-2)2=10.

例4 已知圆的半径为3,圆心在直线x-y=0上,且圆过点(5,2),求圆的方程.

解:由题意设圆的方程为(x-a)2+(y-b)2=9.

因为圆心(a,b)在直线x-y=0上,则a-b=0,

又点(5,2)在圆上,则(5-a)2+(2-b)2=9,

图示

解得图示

所以圆的方程为(x-2)2+(y-2)2=9或(x-5)2+(y-5)2=9.

【锦囊妙计】求圆的标准方程即是求圆心和半径.

赢在起点

1.圆心为(3,-5),半径为5的圆的标准方程是__________.

2.以C(2,-4)为圆心的圆经过M(3,-2),则圆的方程是__________.

3.已知A(3,-1),B(-1,7),则以AB为直径的圆的方程是________.

【题型4】解决与圆有关的简单问题

例1 若方程x2+y2-2x+ay+2=0表示圆,求a的取值范围.

解:x2+y2-2x+ay+2=0

若方程表示圆,则图示

解得{图示>2或a<-2}.

例2 已知关于x,y的二元二次方程x2+y2-2mx+4my+20=0,(1)若此方程表示一个圆,求实数m的取值范围;(2)当此方程所表示的圆的圆心C的坐标为(-3,6),求该圆的标准方程.

解:(1)由x2+y2-2mx+4my+20=0得

(x-m)2+(y+2m)2=5m2-20

若此方程表示圆,则5m2-20>0

解得m<-2或m>2.

所以m的取值范围是{图示<-2或m>2}.

(2)若(x-m)2+(y+2m)2=5m2-20表示圆,则

圆的圆心坐标为(m,-2m),半径为图示

又圆的圆心C(-3,6)(https://www.xing528.com)

则有m=-3且-2m=6,解得m=-3,

r=图示=5

所以圆的标准方程为(x+3)2+(y-6)2=25.

赢在起点

1.若方程x2+y2-6x+4y+m=0表示圆,m的取值范围是_________________.

2.若方程x2+y2+ax-2y+5=0表示圆,a的取值范围是________________.

3.圆(x-a)2+(y-b)2=4a-b的圆心是(1,2),则该圆的半径是________.

一、填空题

1.(1)圆的标准方程是________________________,圆心坐标是____________________,半径是____________.

(2)圆的一般方程是________________________.

2.以C(-2,4)为圆心,半径为3的圆的标准方程是____________________;以点(3,-2)为圆心,5为半径的圆的标准方程是______________;以原点为圆心,4为半径的圆的标准方程是_________________.

3.圆(x+2)2+(y-5)2=16的圆心坐标是____________,半径是____________;圆x2+y2=9的圆心坐标是____________,半径是____________.

4.(1)圆x2+y2-2x+6y-15=0化为标准方程是____________________;

(2)圆x2+y2+4x-8y+11=0化为标准方程是____________________.

5.方程x2+y2-4x-6y-12=0表示的图形是________,如果是圆,其圆心坐标是____________,半径是____________.

6.以点C(-2,5)为圆心,经过原点的圆的标准方程是________________.

7.以点C(1,2)为圆心,经过点A(3,5)的圆的方程是________________.

8.点M(m,2)在曲线x2+y2-2y-1=0上,则m=____________.

9.方程x2+y2+6x-2y+10=0是____________________(图形).

10.方程x2+y2-8x+2y+19=0是____________________(图形).

二、选择题

1.已知圆的方程为(x+1)2+(y-2)2=9,则它的圆心坐标和半径分别为( ).

A.(1,-2),3 B.(-1,2),3 C.(1,-2),9 D.(-1,2),9

2.已知(x-3)2+(y+1)2=4,则圆心坐标和半径分别为( ).

A.(-3,1),2 B.(3,-1),2 C.(-3,1),4 D.(3,-1),4

3.方程x2+y2+6x-8y-11=0表示的曲线是( ).

A.以(3,-4)为圆心,6为半径的圆 B.以(-3,4)为圆心,6为半径的圆

C.以(-3,4)为圆心,36为半径的圆 D.不表示任何图形

4.已知A(1,3),B(-1,1),则以线段AB为直径的圆的方程是( ).

A.(x+1)2+(y-1)2=2  B.x2+(y-2)2=2

C.x2+(y-4)2=2 D.x2+(y-2)2=8

5.已知圆的方程为(x-3)2+(y-5)2=16,则点(2,-1)( ).

A.在圆内不与圆心重合 B.在圆上

C.在圆外 D.与圆心重合

一、填空题

1.已知A(1,-4),B(-3,4),则以AB为直径的圆的方程是________________.

2.以点C(1,3)为圆心,与x轴相切的圆的标准方程是________________.

3.圆(x+1)2+(y-4)2=25与x轴的交点坐标是________________.

4.倾斜角为45°,且经过圆(x-1)2+(y+2)2=7的圆心的直线方程是________________.

5.经过圆(x-2)2+(y+3)2=9的圆心,且与直线y=-2x+7垂直的直线是________________.

6.经过(x-4)2+(y-2)2=16的圆心且与直线y=-2x+5平行的直线方程是________________.

7.方程x2+y2+λx+1=0表示圆,则实数λ的取值范围是_________________.

8.以C(2,1)为圆心并且经过直线2x+y+7=0与x-2y-4=0的交点的圆的方程是________________.

9.圆(x-3)2+(y+1)2=49的圆心到直线3x-4y+7=0的距离是________________.

10.圆C1:x2+(y-1)2=16与圆C2:(x+1)2+(y-2)2=25的圆心距是________________.

二、选择题

1.设线段PQ是以点C(1,1)为圆心的圆的一条直径,已知点P的坐标为(3,-1),则点Q的

坐标为( ).

A.(-2,2) B.(2,0) C.(-1,2) D.(-1,3)

2.圆x2+y2+4x=1的圆心坐标及半径分别是( ).

A.(-2,0),5 B.(2,0),5 C.(-2,0),图示 D.(2,0),图示

3.已知圆C1:x2+y2+2x+6y+6=0和圆C2:x2+y2-8x-4y+7=0,则圆心距为( ).

A.5图示 B.图示 C.5 D.2+图示

4.已知圆x2+y2+mx+ny-6=0的圆心是(-1,3),则圆的半径为( ).

A.图示 B.图示 C.4 D.5

5.以抛物线y2=-16x的焦点为圆心,焦点到准线的距离为半径的圆的方程是( ).

A.(x+4)2+y2=16 B.(x-4)2+y2=16

C.(x+4)2+y2=64 D.(x-4)2+y2=64

三、解答题

1.设圆的半径为图示,且圆过A(3,1)和B(-1,1),求该圆的标准方程.

2.已知某圆经过(0,0),(2,0),(1,1)3点,(1)求该圆的方程;(2)求该圆的圆心和半径.

3.求以椭圆图示的焦距为直径的圆的方程.

1.求过点A(6,0)和B(1,5)且圆心在直线2x-7y+8=0上的圆的方程.

2.求以直线3x-y+2=0和直线x+2y-11=0交点为圆心,半径为3的圆的方程.

3.求直线x-y-2=0被抛物线y2=2x截得的线段为直径的圆的方程.

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈