首页 理论教育 温拌剂对WMA路用性能的影响-低碳减排热拌沥青混合料研究结果

温拌剂对WMA路用性能的影响-低碳减排热拌沥青混合料研究结果

时间:2023-10-06 理论教育 版权反馈
【摘要】:本书采用高温稳定性、低温抗裂性、水稳定性3个指标评价掺加不同温拌剂的AC-16和AC-20WMA性能。图2.6AC-16合成级配曲线图图2.7AC-20合成级配曲线图1.温拌剂对沥青混合料高温性能的影响采用车辙试验评价混合料高温性能,试验温度为60℃,轮压0.7MPa。说明对混合料低温性能方面的影响Sasobit稍劣于Evotherm。

温拌剂对WMA路用性能的影响-低碳减排热拌沥青混合料研究结果

本书采用高温稳定性、低温抗裂性、水稳定性3个指标评价掺加不同温拌剂的AC-16和AC-20WMA性能。采用马歇尔试验方法确定最佳沥青用量,进行路用性能试验。AC-16配比为碎石(10~20mm)∶碎石(5~10mm)∶石屑∶水洗砂∶矿粉=40%∶20%∶12%∶25%∶3.0%,矿料级配如图2.6所示,油石比为4.85%;AC-20配比为碎石(10~20mm)∶碎石(5~10mm)∶石屑∶水洗砂∶矿粉=43%∶18%∶22%∶12%∶5.0%,矿料级配如图2.7所示,油石比为4.6%。添加Evotherm温拌剂的混合料以下简称E-WMA,添加Sasobit的混合料以下简称S-WMA,沥青加热温度为160~170℃,集料加热温度为165~175℃,参考国内外研究成果E-WMA拌和温度为145℃左右,S-WMA拌和温度为160℃左右,HMA按照规范温度成型。在空隙率相近的情况下对比E-WMA、S-WMA、HMA 3种混合料的路用性能。

图2.6 AC-16合成级配曲线图

图2.7 AC-20合成级配曲线图

1.温拌剂对沥青混合料高温性能的影响

采用车辙试验评价混合料高温性能,试验温度为60℃,轮压0.7MPa。试验结果见表2.8。

表2.8 车辙试验结果

从表2.8中可以看出,对于AC-16和AC-20两种混合料WMA的动稳定度较HMA的动稳定度均高一些,这是因为温拌剂有助于混合料形成更为密实的结构,空隙率减小,而有车辙减小;S-WMA的动稳定度较E-WMA的动稳定度高一些,这主要是因为Sasobit在60℃时在沥青中形成晶体网状结构,相当于在沥青中“加筋”。说明在提高混合料高温性能方面Sasobit优于Evotherm。

2.温拌剂对沥青混合料低温抗裂性的影响

参照《公路工程沥青及沥青混合料试验规程》(JTG E20—2011),采用低温弯曲试验来测试HMA和WMA的低温抗裂性能,试验温度为-10℃、加载速率为50mm/min。试件小梁尺寸为30mm×35mm×250mm。HMA、E-WMA、S-WMA的低温弯曲试验结果见表2.9。

表2.9 低温弯曲试验结果(www.xing528.com)

从表2.9中可以看出,WMA的最大破坏应变均比HMA的小,但是满足《公路沥青路面施工技术规范》(JTG F40—2004)对HMA的低温抗裂性要求,E-WMA低温抗裂性能优于S-WMA的低温抗裂性能。说明对混合料低温性能方面的影响Sasobit稍劣于Evotherm。

3.温拌剂对沥青混合料水稳定性的影响

水稳定性试验包括浸水马歇尔试验和冻融劈裂试验。结果见表2.10。

表2.10 浸水马歇尔稳定度试验结果

从表2.10中试验结果可知,E-WMA两种类型混合料残留稳定与HMA相差不大,说明Evotherm对混合料残留稳定度基本没有影响;S-WMA两种类型混合料的残留稳定度均比HMA低,尤其是AC-16降低约10%,降低的幅度较大。

冻融劈裂试验按照现行规范要求进行,冻融试件冰冻温度为(-18±2)℃,保温16h;(60±0.5)℃恒温水槽保温24h,试验结果见表2.11。

表2.11 冻融劈裂试验结果

两种类型混合料WMA冻融劈裂强度比均较HMA降低,E-WMA劈裂强度比的降低幅度稍大于S-WMA。对比浸水马歇尔稳定度试验结果和冻融劈裂试验结果,在水稳定性方面不能说Sasobit和Evotherm孰优孰劣。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈