首页 理论教育 平均值、标准差和变异系数混凝土结构与砌体结构

平均值、标准差和变异系数混凝土结构与砌体结构

时间:2023-10-05 理论教育 版权反馈
【摘要】:算术平均值μ、标准差σ和变异系数δ 是离散型随机变量的三个主要统计参数。1)平均值平均值μ 表示随机变量的波动中心,亦即代表随机变量值Xi 的平均水平的特征值,即式中 n——随机变量的个数。为了使量纲与随机变量相同,可将方差开方,则得标准差。3)变异系数由上述可见,标准差σ只是反映绝对离散(波动)的大小,而在实践上,人们往往更关心相对离散的大小,因此,在数理统计数上又用变异系数来反映随机变量的离散程度。

平均值、标准差和变异系数混凝土结构与砌体结构

算术平均值μ、标准差σ和变异系数δ 是离散型随机变量的三个主要统计参数。

1)平均值

平均值μ 表示随机变量的波动中心,亦即代表随机变量值Xi 的平均水平的特征值,即

式中 n——随机变量的个数。

譬如,有两组钢筋进行拉伸试验,第Ⅰ组的屈服强度为387 N/mm2、382 N/mm2、371N/mm2;第Ⅱ组为402N/mm2、375N/mm2、363N/mm2。Ⅰ、Ⅱ组的平均值均为380N/mm2

2)标准差(www.xing528.com)

标准差σ是表示随机变量X 取值离散程度的特征值,按下列公式计算:

譬如,上述两组钢筋屈服强度的平均值相同,但其离散程度却不同,而每组各个试验值对平均值的偏差之和又都是零(因为偏差有正有负,互相抵消),由此将看不出二者的离散程度的不同。但是,如果将每个偏差平方,则将消去正负号,然后,总和后再除以试件数n,则得方差。方差具有随机变量二次方的量纲。为了使量纲与随机变量相同,可将方差开方,则得标准差。由此可得上述两组试验值的标准差分别为σ=6.7N/mm2、σ=16.3N/mm2,可见第Ⅱ组钢筋屈服强度的离散程度较大。

3)变异系数

由上述可见,标准差σ只是反映绝对离散(波动)的大小,而在实践上,人们往往更关心相对离散的大小,因此,在数理统计数上又用变异系数来反映随机变量的离散程度。

变异系数δ是反映随机变量相对离散程度的特征值,按下列公式计算:

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈