首页 理论教育 日系汽车技术:MG1和MG2的结构与功能

日系汽车技术:MG1和MG2的结构与功能

时间:2023-09-25 理论教育 版权反馈
【摘要】:1.MG1和MG2MG1MG2作为辅助驱动力的来源,在需要时给发动机提供辅助动力,辅助车辆达到极佳的动态性能,包括平稳起步和加速再生制动激活时,MG2将车辆的动能转换为电能,然后存储在HV蓄电池中MG1对HV蓄电池再次充电并提供电能以驱动MG2另外,通过控制发电量(因此改变发电机转速),MG1可有效地控制变速器持续变速功能MG1也可作为起动机来起动发动机MG1和MG2均为紧凑轻质而且高效的交流永磁

日系汽车技术:MG1和MG2的结构与功能

1.MG1和MG2

MG1、MG2作为辅助驱动力的来源,在需要时给发动机提供辅助动力,辅助车辆达到极佳的动态性能,包括平稳起步和加速。再生制动激活时,MG2将车辆的动能转换为电能,然后存储在HV蓄电池中。

MG1对HV蓄电池再次充电并提供电能以驱动MG2。另外,通过控制发电量(因此改变发电机转速),MG1可有效地控制变速器持续变速功能。MG1也可作为起动机来起动发动机。

MG1和MG2均为紧凑、轻质而且高效的交流永磁同步型。

MG1和MG2使用的转子均包括一个高磁力永磁体,可以最大程度地减小转矩损失。定子则由低铁耗的磁钢片和一个高压的电阻绕组线制成。通过这些措施,使MG1和MG2结构紧凑并实现了大功率和大转矩的性能(图1-18)。MG1和MG2上增加了通过水泵冷却系统

永磁电机(MG1和MG2)(图1-18):三相交流经过定子线圈的三相绕组时,电机内产生旋转磁场。通过转子的旋转位置和转速控制旋转磁场,转子中的永久磁铁受到旋转磁场的吸引而产生转矩。产生的转矩可用于与电流量成比例的所有用途,且转速由交流的频率控制。此外,通过适当控制转子磁铁的旋转磁场和角度,可以有效地产生大转矩和高转速。电机发电时,转子旋转产生磁场,可在定子线圈内产生电流

转速传感器/解析器(图1-19):此传感器结构紧凑、可靠性极高,可精确地检测磁极位置,这对确保对MG1和MG2的有效控制非常重要。传感器的定子包括三种线圈:励磁线圈A、检测线圈S和检测线圈C。检测线圈S和C的相位交错90°。转子为椭圆形,定子与转子间的距离随转子的旋转而变化。交流电流入励磁线圈A,输出稳频信号。检测线圈S和检测线圈C输出与转子位置对应的值。因此,MG ECU根据检测线圈S和检测线圈C输出值间的差异检测绝对位置。此外,MG ECU根据一定时间内位置的变化量计算转速。

978-7-111-46670-3-Part01-19.jpg

图1-18 带分动器的混合动力变速器

978-7-111-46670-3-Part01-20.jpg

图1-19 转速传感器/解析器

由于交流以恒定频率从该解析器流入励磁线圈,因此有恒定频率输出至检测线圈S和线圈C,与转子转速无关。转子为椭圆形,定子与转子间的距离随转子的旋转而变化。因此,检测线圈S和C输出波形的峰值随转子位置的变化而变化。MG ECU持续监视这些峰值,并将它们连接形成虚拟波形。MG ECU根据检测线圈S和C值之间的差异计算转子的绝对位置,根据检测线圈S的虚拟波形和检测线圈C的虚拟波形的相位差判定转子的方向。此外,MG ECU根据规定时间内转子位置的变化量计算转速。

2.逆变器总成

逆变器(图1-20)将HV蓄电池的高压直流电转换为三相交流电来驱动MG1和MG2。

HV ECU通过MG ECU控制功率晶体管的激活。另外,逆变器将电流控制所需的信息(如输出电流或电压)通过MG ECU传输至HV ECU。

通过与发动机冷却系统分离的专用冷却系统散热器来一同冷却逆变器、MG1和MG2。

增压转换器和逆变器集成于一个单元内且包含于逆变器总成,以将HV蓄电池的额定电压输出从DC 288V升至最高电压DC 650V。电压升高后,逆变器将直流电转换为交流电。

MG1和MG2的桥接电路各包含6个功率晶体管。此外,信号处理器/保护功能处理器已集成于小型PM(动力模块)内以驱动车辆。

各PM的功率晶体管均采用IGBT(绝缘栅双极晶体管)。双向冷却结构用于冷却IGBT,这样有效地排除了系统运行时产生的热量。此外,因这种结构还制成了结构更加紧凑的逆变器总成。

978-7-111-46670-3-Part01-21.jpg

图1-20 逆变器总成

增压转换器和逆变器:此增压转换器将HV蓄电池输出的额定电压DC 288V升至最高电压DC 650V。增压转换器由带内置IGBT的增压PM和存储电能的电抗器组成。该IGBT可进行切换控制。通过使用这些零部件,增压转换器升高电压。MG1或MG2作为发电机工作时,逆变器将交流电转换为最高电压DC 650V,然后增压转换器将该电压降至额定电压DC288V,从而为HV蓄电池充电。

MG(电动机/发电机)ECU:逆变器总成采用了MG ECU。根据来自HV ECU的信号,MG ECU控制逆变器和增压转换器以驱动MG1或MG2,或者使其发电。MG ECU将车辆控制所需的信息(如逆变器输出电流值、逆变器温度和任何故障信息)传输至HV ECU。此ECU接收来自HV ECU的控制电机所需的信息(如所需驱动力和电机温度)。

3.冷却系统(逆变器总成、MG1和MG2)

采用与发动机冷却系统分离的冷却系统对逆变器、MG1和MG2进行冷却(图1-21)。

电源状态切换至READYON状态时,该冷却系统使水泵工作。

专门用于逆变器、MG1和MG2的散热器安装于冷凝器(空调)上。通过将原本独立的逆变器散热器、空调冷凝器和发动机散热器集成一体,使布局更紧凑。

SLLC(超长效冷却液)已预先混合好(50%冷却液和50%去离子水),因此在为车辆添加或更换SLLC时,无需稀释。

水泵:采用紧凑、大功率型水泵。泵电动机采用大功率的三相直流电动机,此外,还采用了在两端支撑轴的轴承,从而减小了噪声和振动。

978-7-111-46670-3-Part01-22.jpg

图1-21 冷却系统连接结构

4.HV蓄电池

新款LS600hL/LS600h采用密封镍氢(Ni-MH)HV蓄电池(图1-22)。此HV蓄电池具有高能、重量轻、配合混合动力驱动系统使用时间长等特性。车辆正常工作期间,由于混合动力驱动系统通过充电/放电控制来保持HV蓄电池SOC(充电状态)为恒定数值,因此,车辆不依赖外部设备再次充电。

978-7-111-46670-3-Part01-23.jpg(www.xing528.com)

图1-22 HV蓄电池

HV蓄电池采用了镍片金属容器单格,以实现高冷却性能和紧凑结构。因此,极好地实现了高能、重量轻和使用寿命长的特点。

HV蓄电池单元包含20个蓄电池模块(图1-23)。每个蓄电池模块由12个单格组成,彼此通过母线模块按顺序连接。蓄电池单格在两个部位相互连接,以减小内部电阻并提高效率。HV蓄电池单元共由240个单格(12个单格×20个模块)组成,额定电压为288V(1.2V×240个单格),位于后排座椅后的行李箱内。

978-7-111-46670-3-Part01-24.jpg

图1-23 HV蓄电池单元主部件位置分布图

HV蓄电池单元、接线盒、蓄电池智能单元、维修塞和辅助蓄电池的DC/DC转换器安装在盒内,使结构更加紧凑。

SMRG(系统主继电器搭铁)、SMRB(系统主继电器蓄电池)和电流传感器集成于接线盒内。

辅助蓄电池的DC/DC转换器安装在HV蓄电池单元的侧面,EPS和主动稳定悬架系统的DC/DC转换器安装在HV蓄电池单元上。

辅助蓄电池的DC/DC转换器采用了冷却片,以提高冷却性能。

HV蓄电池单元上安装有专用冷却系统。若车辆安装有后空调,由于此系统控制后空调而使其具有空调功能。

用于切断电路的维修塞位于HV蓄电池模块中部(9号和10号蓄电池之间),维修高压电路的任何部分时,务必拆下此塞。

辅助蓄电池的DC/DC转换器(图1-24):车辆的辅助设备,如车灯音响系统、空调系统(除电动逆变器压缩机外)及ECU,均通过DC 14V的供电系统供电。由于混合动力驱动系统发电机输出DC 288V的额定电压,转换器将电压从DC 288V转换至DC 14V,以对辅助蓄电池再次充电。

EPS和主动稳定悬架系统的DC/DC转换器(图1-25):此转换器将HV蓄电池的额定电压从DC 288V降至DC 46V并为动力转向ECU供电以激活EPS。若车辆安装有主动稳定悬架系统,则此转换器为前主动稳定控制ECU和后主动稳定控制ECU供电。若为EPS供电失败,则DC/DC转换器将辅助蓄电池电压从12V升至33V并将其供给EPS。

接线盒:采用集成了SMRG和SMRB的接线盒。

维修塞:在检查或维修前拆下维修塞(在HV蓄电池中部位置)切断高压电路,从而确保维修期间的安全。维修塞总成包含互锁的舌簧开关。将卡箍翻起,关闭用来断开SMR的引导开关。但是,为确保安全,在拆下维修塞前一定要关闭点火开关。维修塞总成内安装有高压电路主熔丝。维修后,请连接维修塞后再起动系统。否则可能会损坏蓄电池智能单元。

978-7-111-46670-3-Part01-25.jpg

图1-24 辅助蓄电池的DC/DC转换器系统控制图

978-7-111-46670-3-Part01-26.jpg

图1-25 EPS和主动稳定悬架系统的DC/DC转换器系统控制图

HV蓄电池单元冷却系统:HV蓄电池在反复的充电和放电循环过程中产生大量热量,为确保HV蓄电池性能正常,采用了专用冷却系统。此冷却系统利用来自后空调装置的冷气来冷却HV蓄电池。但是,若车辆未安装后空调装置,则此系统可起到HV蓄电池专用冷却系统的功能。无论是否安装后空调装置,此系统都包含蓄电池冷却鼓风机风扇、空调鼓风机风扇、蒸发器和控制风门。此系统可通过冷气冷却HV蓄电池,因空气流量减少,提高了冷却性能并使冷却风扇更安静地工作。此冷却系统从两个位置(后空调装置和车厢内部)引入冷气,并采用专用控制风门来控制进气。蓄电池冷却鼓风机风扇引入的冷气通过单格之间的缝隙从HV蓄电池的上部流至下部,然后绕经DC/DC转换器进入行李箱。

5.加速踏板位置传感器

根据加速踏板的受力大小,安装在加速踏板臂基部的磁轭围绕霍尔集成电路旋转。霍尔集成电路将磁通量的即时变化情况转换为电信号并将其以加速踏板受力的形式发送至HV ECU。

此传感器采用霍尔集成电路(图1-26),因此其检查方法与普通加速踏板位置传感器不同。

978-7-111-46670-3-Part01-27.jpg

图1-26 加速踏板位置传感器电路结构

6.电源电缆

电源电缆为高电压、大电流电缆,连接HV蓄电池模块与逆变器、逆变器与MG1和MG2、逆变器与电动逆变器压缩机。电源电缆源于后排座椅后的HV蓄电池接线盒的插接器,经地板下侧沿地板加强件侧,与发动机室的逆变器相连(图1-27)。为减少电磁干扰,电源电缆为屏蔽安装。为便于辨认,高压线束和插接器采用橙色标记,将其与普通低压线束区分开。

978-7-111-46670-3-Part01-28.jpg

图1-27 电源电缆

7.辅助蓄电池

辅助蓄电池采用屏蔽、免维护的DC 12V蓄电池。辅助蓄电池上安装有蓄电池温度传感器。辅助蓄电池位于行李箱内左侧(图1-28)。

978-7-111-46670-3-Part01-29.jpg

图1-28 辅助蓄电池

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈