通过SEM的照片图像,可测量单颗粒物的粒径分布与形态。粒子的粒径分布在0.1~20μm之间。DS粒子的平均直径约为1.3μm,而NDS和DL的粒子分别约为0.8和1.2μm。DS中超过80%的颗粒物,在可吸入颗粒物的粒径范围内(<2.5μm)。图55-9和表55-2展示了DS中一些典型的气溶胶颗粒物的形态特征以及它们的可能来源,这给上述讨论提供了证据:①黏土(粒子G)、长石(粒子H)、方解石(粒子F、I)和角闪石(粒子A)等粒子,可在颗粒物的照片中很普遍发现,各种形状的很纯的石英(粒子B、C、D)在DS和DL中也很常见。沙尘暴气溶胶在DS中就像鸡尾酒一样,含有大量多相聚合物颗粒、不规则形状颗粒和球形颗粒,比NDS和DL粒径大一些,均匀度差一些(图55-9)。很明显,沙尘暴气溶胶主要为不同种类的黏土矿物质和石英的混合物。②煤飞灰(煤灰)是球形的铝硅酸盐颗粒[15],在DS、NDS和DL中大约分别含有1%、12.3%和6.7%的煤飞灰粒子。这表明,一些污染成分被引入,并与矿物气溶胶混合在一起。③NaCl(粒子E)可以直观地证明,DS的一些粒子来自沙尘暴途中干涸的盐湖或盐渍土。④CaCO3(粒子I)和(NH 4)2 SO4(粒子K,仅含有大量的S)彼此紧挨,出现在同一张照片中,粒子J(在I旁边)是CaCO3粒子,其中含有少量的S。这说明了有一定量的CaSO4出现在CaCO3边上,可能是CaCO3颗粒表面吸收了SO 2、H 2 SO 4或者(NH 4)2 SO 4,它们相互作用生成了CaSO 4或者(NH 4)2 Ca(SO 4)2。
图55-9 沙尘暴样品中的典型颗粒物的形态特征(彩图见下载文件包,网址见14页脚注)
图中字母为各种典型单颗粒物的代号。
表55-2 沙尘暴样品的典型颗粒物的理化特性和来源信息
综上所述,图像分析法简单直观地展示了沙尘暴和非沙尘暴单颗粒物的本质特征[22,38]。气溶胶单颗粒物的3个主要组分为黏土和石英(Al2 O 3、SiO 2等)、方解石(CaO、CaCO 3)和无机盐(硫酸盐、磷酸盐、氯化物)。DS和DL的粒子,体现了内蒙古沙尘暴源头的地壳源,而NDS更多地反映了北京局地污染源。4条光滑的趋势线(L 1—4)从中间的三角形核心(铝硅酸盐)向外伸展,指向石英、CaCO 3(CaO)、无机盐(硫酸盐等)和Al2 O 3。线末端的颗粒,代表几乎“纯”的矿物组分,它们之间为物质间混合状态(DS 63%、DL 60%、NDS 48%);而线上的颗粒展现了各种矿物气溶胶和污染气溶胶的物质内混合状态,以及它们间的连续渐变趋势(NDS最高达52%)。矿物气溶胶和污染气溶胶(硫酸盐)无论在沙尘暴、非沙尘暴期间,还是在沙漠地区,均存在物质内混合状态(NDS 32%、DS 6%、DL 16%),这可能归因于矿物气溶胶能吸附污染气体,并与之反应而凝结在颗粒物表面。在沙尘暴长距离传输途经污染地区的过程中,硫酸盐、SO 2等污染气体与CaCO 3和其他矿物气溶胶可能发生相互作用,这包括四价硫[S(Ⅳ)]和其他含S化合物在矿物气溶胶表面所发生的非均相反应,以及一些诸如CaCO 3被CaSO 4逐步替代的反应。在非沙尘暴时期高浓度的污染气体和高相对湿度的气象条件下,这些作用更加显著。元素P、S和Cl异常紧密相关,证明了广泛分布在中国北部和西北部的那些富P土壤和盐渍土土壤,也是沙尘暴的重要来源之一。
[1] Cyranoski D.China plans clean sweep on dust storms.Nature,2003,421(6919):101.
[2] Gao Y,Arimoto R,Zhou M Y,et al.Relationships between the dust concentrations over eastern Asia and the remote North Pacific.Journal of Geophysical Research,1992,97:9867-9872.
[3] Duce R A,C K Unni B J,et al.Long-range atmospheric transport of soil dust from Asia to the tropical North Pacific:Temporal variability.Science,1980,209(4464):1522-1524.
[4] Mori I,Nishikawa M,Quan H,et al.Estimation of the concentration and chemical composition of Kosa aerosols at their origin.Atmospheric Environment,2002,36(29):4569-4575.
[5] Fan X B,Okada N N,et al.Mineral particles collected in China and Japan during the same Asian dust-storm event.Atmospheric Environment,1996,30(2):347-351.
[6] Sun J.Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau.Earth and Planetary Science Letters,2002,203(3):845-859.
[7] Ma C J,Tohno S,Kasahara M,et al.Properties of individual Asian dust storm particles collected at Kosan,Korea during ACE-Asia.Atmospheric Environment,2004,38(8):1133-1143.
[8] Ro C U,Oh K Y,Kim H K,et al.Chemical speciation of individual atmospheric particles using low-Z electron probe X-ray microanalysis:Characterizing“Asian Dust”deposited with rainwater in Seoul,Korea.Atmospheric Environment,2001,35(29):4995-5005.
[9] Ma C J,Kasahara M,Holler R,et al.Characteristics of single particles sampled in Japan during the Asian dust storm period.Atmospheric Environment,2001,35(15):2707-2714.
[10] Okada K,Naruse H,Tanaka Y,et al.X-ray spectrometry of individual Asian dust-storm particles over the Japanese islands and the North Pacific Ocean.Atmospheric Environment,1990,24(6):1369-1378.
[11] Anderson J R,Buseck P R,Patterson T L.Characterization of the Bermuda tropospheric aerosol by combined individual-particle and bulk-aerosol analysis.Atmospheric Environment,1996,30(2):319-338.
[12] Zhuang G,Guo J,Yuan H,et al.The compositions,sources,and size distribution of the dust storm from China in spring of 2000 and its impact on the global environment.Chinese Science Bulletin,2001,46(11):895-901.
[13] Sun Y,Zhuang G,Yuan H,et al.Characteristics and sources of 2002 super dust storm in Beijing.Chinese Science Bulletin,2004,49(7):698-705.
[14] Guo J,Rahn K A,Zhuang G,et al.A mechanism for the increase of pollution elements in dust storms in Beijing.Atmospheric Environment,2004,38(6):855-862.
[15] Gao Y,Anderson J R.Characteristics of Chinese aerosols determined by individual-particle analysis.Journal of Geophysical research,2001,106(D16):18037-18045.
[16] Whittaker A G,Jones T P,Shao L,et al.Mineral dust in urban air:Beijing,China.Mineralogical Magazine,2003,67(2):173-182.
[17] Shi Z,Shao L,Jone T P,et al.Characterization of airborne individual particles collected in an urban area,a satellite city and a clean air area in Beijing,2001.Atmospheric environment,2003,37(29):4097-4108.(www.xing528.com)
[18] Zhang D,Shi G,Iwasaka Y,et al.mixture of sulfate and nitrate in coastal atmospheric aerosols:Individual particle studies in Qingdao(36°04′N,120°21′E),China.Atmospheric Environment,2000,34(17):2669-2679.
[19] Zhang D,Zang J,Shi G,et al.Mixture state of individual Asian dust particles at a coastal site of Qingdao,China.Atmospheric Environment,2003,37(28):3895-3901.
[20] Zhang K,Yang W,Yang X.Combating strategies for desertification and sandstorm in China,paper presented at Sino-US workshop on dust storm and its effect on human health.NC,USA:Raleigh,2002.
[21] Wang Y,Zhuang G S,Tang A,et al.The ion chemistry and the source of PM 2.5 aerosol in Beijing.Atmospheric Environment,2005,39(21):3771-3784.
[22] Yuan H,Rahn K A,Zhuang G.Graphical techniques for interpreting the composition of individual aerosol particles.Atmospheric Environment,2004,38(39):6845-6854.
[23] Makra L,Borbely-Kiss I,Koltay E,et al.Enrichment of desert soil elements in Taklimakan dust aerosol.Nuclear Instruments and Methods in Physics Research,2002,189(1-4):214-220.
[24] Goudie A S,Middleton N J.Saharan dust storms:Nature and consequences.Earth-Science Reviews,2001,56(1):179-204.
[25] Mason B.Principles of geochemistry:2nd Ed.John Wiley&Sons Inc,1960:152-153.
[26] Xuan J,Sokolik I N.Characterization of sources and emission rates of mineral dust in northern China.Atmospheric Environment,2002,36(31):4863-4876.
[27] Zhang X Y,Gong S L,Shen Z X,et al.Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia.Journal of Geophysical Research,2003,108(D9):4261-4274.
[28] Wang Y,Zhuang G S,Tang A,et al.The ion chemistry and the source of PM2.5 aerosol in Beijing.Atmospheric Environment,2005,39(21):3771-3784.
[29] Taylor S R.Abundance of chemical elements in continental crust:A new table.Geochimica et Cosmochimica Acta,1964,28(8):1273-1285.
[30] Dentener F J,Carmichael G R,Zhang Y,et al.Role of mineral aerosol as a reactive surface in the global troposphere.Journal of Geophysical Research,1996,101(D17):22869-22889.
[31] Usher C R,Michel A E,Grassian V H.Reaction on mineral dust.Chemical Reviews,2003,103(12):4883-4939.
[32] Mori I,Nishikawa M,Iwasaka Y.Chemical reaction during the coagulation of ammonium sulfate and mineral particles in the atmosphere.The Science of the Total Environment,1998,224(1-3):87-91.
[33] Arimoto R.Eolian dust and climate:Relationships to sources,tropospheric chemistry,transport and deposition.Earth-Science Reviews,2001,54(1-3):29-42.
[34] Zhao D,Xiong J,Xu Y,et al.Acid rain in southwestern China.Atmospheric Environment,1988,22(2):3349-358.
[35] Bowen H J M.Trace elements in biochemistry.New York:Academic Press,1996.
[36] Orris G J,Grauch R I.Rare earth element mines,deposits,and occurrences.Rep 02-189 of USGS,USA,2002:30-32.
[37] Wu C,Yuan Z,Bai G.Rare earth deposits in China//Jones A P,Wall F,Williams C T.Rare earth minerals—Chemistry,origin and ore deposits:The Mineralogical Society Series 7.New York:Chapman and Hall,1996:281-310.
[38] Yuan H,Zhuang G,Rahn K A,et al.Composition and mixing of individual particles in dust and nondust conditions of North China,Spring 2002.J Geophys Res,2006,111:D20208.doi:10.1029/2005JD006478.
【注释】
[1]瓦里关是地名。瓦里关,地处青藏高原东北坡,瓦里关为东北至西南走向的孤立山体,南北长21千米,东西宽约7千米。因建设了中国大气本底基准观象台而闻名于世界。瓦里关全球大气本底站是北半球内陆腹部唯一大气本底观测站,其观测结果可以代表北半球中纬度内陆地区的大气温室气体浓度及其变化状况。
[2]图中Area字样意为“区域”,代表主要的“类”。为保持资料的原貌,在此不予翻译。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。