上海大气PM 1的组分,可以分为以下几个部分:有机气溶胶(OM)、硫酸盐、硝酸盐、元素碳(EC)、海盐以及矿物气溶胶。基于改进的IMPROVE公式以及相应的湿度函数[35],估算了上海PM 1中各组分的消光系数,再根据估算的上述各个组分的消光系数和实际测定的上述各组分的平均浓度,估算了上海PM 1中上述各组分在此次重度雾霾事件中对光衰减作用的比例。如图51-3所示,在重度雾霾期间,各组分占PM 1中质量浓度的百分比按大小排列如下:有机气溶胶(44%)>硝酸盐(23%)>硫酸盐(15%)>矿物气溶胶(10%)>海盐(5%)>黑碳(BC,3%),其中有机气溶胶和硝酸盐是PM 1中含量最高的2个组分。各组分对光衰减的贡献比例按大小顺序如下:有机气溶胶(33%)>硝酸盐(32%)>硫酸盐(20%)>BC(7%)>海盐(6%)>矿物气溶胶(2%)。有机气溶胶和硝酸盐对消光的贡献最大,在重雾霾期间分别为33%和32%。EC(BC)虽然只占到颗粒物质量浓度的3%,但是对光衰减作用的比例高达7%。这是因为BC是所有组分中吸光效率最高的物质。在上述各个组分中,硫酸盐主要是燃煤排放的SO 2的氧化产物。由于近年来燃煤脱硫取得成功,硫酸盐在大气颗粒物中的比例已相对减少。如本文所研究的上海亚微米颗粒物中,硝酸盐的比例已超过硫酸盐。虽然有机气溶胶和硝酸盐都来自交通源(机动车和船舶等)和燃煤两者的排放,但是从以上数据可以明显看到,交通源排放的氮氧化物与有机气溶胶与燃煤排放的这两部分污染物相比较,其所占的比例在近年来已经越来越大。加之交通源(如柴油车)燃油的不完全燃烧所排放的BC,是大气中BC的主要来源,说明了交通源的排放已经成为触发上海雾霾发生的决定性因子。
图51-3 上海PM 1中的各组分(彩图见下载文件包,网址见14页脚注)
(a)占PM 1质量总浓度的比例;(b)对大气消光的贡献比例。
综上所述,PM 1是上海颗粒物污染的主要贡献者,也是致使上海雾霾形成的占压倒比例的主要贡献者。上海的大气污染问题,主要是细颗粒物乃至亚微米颗粒物PM 1的污染问题。有机物和可溶性无机离子(TWSII)是上海大气PM 1的最主要组分。PM 1浓度以及主要因此而产生的雾霾,均有明显的季节特征。冬季污染最为严重,冬季的气象条件及其与机动车和工业排放的共同作用,是冬季雾霾严重的主要原因。(NH 4)2 SO 4和NH 4 NO 3是PM 1中最主要的可溶性物种。硝酸盐在雾霾期间的浓度上升最快,PM 1中的NO-3/SO2-4比值,从非雾霾期间的<0.86上升到重度雾霾期间的1.32,说明机动车的排放相对于固定源排放,对上海大气能见度的影响更为突出。有机气溶胶、NH 4 NO 3、(NH 4)2 SO4、EC是影响上海大气能见度衰减的主要因子。机动车等交通源是有机气溶胶、硝酸盐以及BC的主要排放源,船舶排放也已经是上海大气不可忽视的污染来源。因此,包括船舶排放等交通源,是触发上海雾霾的主要因子。
[1] Wang Y,Zhuang G S,Zhang X Y,et al.The ion chemistry,seasonal cycle,and sources of PM 2.5 and TSP aerosol in Shanghai.Atmospheric Environment,2006,40(16):2935-2952.
[2] Huang K,Zhuang G,Lin Y,et al.Impact of anthropogenic emission on air quality over a megacity—Revealed from an intensive atmospheric campaign during the Chinese Spring Festival.Atmos Chem Phys,2012,12(23):11631-11645.
[3] Huang K,Zhuang G,Lin Y,et al.How to improve the air quality over megacities in China:Pollution characterization and source analysis in Shanghai before,during,and after the 2010 World Expo.Atmos Chem Phys,2013,13(12):5927-5942.
[4] 张小曳,张养梅,曹国良.北京PM 1中的化学组成及其控制对策思考.应用气象学报,2012,23(3):257-264.
[5] 苏荣荣,钱枫,熊振华,等.北京市春季大气PM1的微观形貌及富集特征//2013北京国际环境技术研讨会论文集.北京,2013:39-45.
[6] Xu J,Bergin M H,Yu X,et al.Measurement of aerosol chemical,physical and radiative properties in the Yangtze Delta Region of China.Atmospheric Environment,2002,36(2):161-173.
[7] 邓雪娇,李菲,李源鸿,等.广州市近地层PM的垂直分布特征//第30届中国气象学会年会论文集.南京,2013:1-11.
[8] 邓雪娇,张芷言,李菲,等.广州地区PM 1气溶胶、湿度效应与能见度的函数关系//第十一届全国气溶胶会议暨第十届海峡两岸气溶胶技术研讨会论文集.武汉,2013:118-128.
[9] Huang X F,He L Y,Hu M,et al.Characterization of submicron aerosols at a rural site in Pearl River Delta of China using an Aerodyne High-Resolution Aerosol Mass Spectrometer.Atmospheric Chemistry and Physics,2011,11(5):1865-1877.
[10] Cheng H,Gong W,Wang Z,et al.Ionic composition of submicron particles(PM 1)during the long-lasting haze period in January 2013 in Wuhan,Central China.Journal of Environmental Sciences-China,2014,26(4):810-817.
[11] 成海容,王祖武,张帆,等.武汉市大气灰霾期PM 1水溶性组分污染特征研究//第十一届全国气溶胶会议暨第十届海峡两岸气溶胶技术研讨会论文集.武汉,2013:45-48.
[12] 沈振兴,韩月梅,周娟,等.西安冬季大气亚微米颗粒物的化学特征及来源解析.西安交通大学学报,2008,42(11):1418-1423.
[13] 王浥尘,曹军骥,张宁宁,等.西安大气细颗粒(PM 1)化学组成及其对能见度的影响.地球科学与环境学报,2014,36(3):94-101.
[14] Shen Z,Cao J,Tong Z,et al.Chemical characteristics of submicron particles in winter in Xi'an.Aerosol and Air Quality Research,2009,9(1):80-93.
[15] Zhang Y J,Tang L L,Wang Z,et al.Insights into characteristics,sources,and evolution of submicron aerosols during harvest seasons in the Yangtze River Delta Region,China.Atmos Chem Phys,2015,15(3):1331-1349.
[16] Sun Y,Jiang Q,Wang Z,et al.Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013.Journal of Geophysical Research-Atmospheres,2014,119(7):4380-4398.(www.xing528.com)
[17] Qiao T,Zhao M,Xiu G,et al.Seasonal variations of water soluble composition(WSOC,Hulis and WSIIs)in PM 1 and its implications on haze pollution in urban Shanghai,China.Atmospheric Environment,2015,123:306-314.
[18] 周敏,陈长虹,乔利平,等.2013年1月中国中东部大气重污染期间上海颗粒物的污染特征.环境科学学报,2013,33(11):3118-3126.
[19] 沈俊秀,肖珊,余琦,等.上海市道路环境PM 1、PM 2.5和PM 10污染水平.环境化学,2011,30(6):1206-1207.
[20] Shi Y,Chen J,Hu D,et al.Airborne submicron particulate(PM1)pollution in Shanghai,China:Chemical variability,formation/dissociation of associated semi-volatile components and the impacts on visibility.Science of the Total Environment,2014,473:199-206.
[21] Huang X F,He L Y,Xue L,et al.Highly time-resolved chemical characterization of atmospheric fine particles during 2010 Shanghai World Expo.Atmos Chem Phys,2012,12(11):4897-4907.
[22] 顾卓良.灰霾天气不同粒径的颗粒物污染特征分析.环境监测管理与技术,2012,24(2):31-33.
[23] 陈慧娟,刘君峰,张静玉,等.广州市PM2.5和PM1质量浓度变化特征.环境科学与技术,2008,31(10):87-91.
[24] Lin J J,Lee L C.Characterization of the concentration and distribution of urban submicron(PM 1)aerosol particles.Atmospheric Environment,2004,38(3):469-475.
[25] Li J,Zhuang G S,Huang K,et al.Characteristics and sources of air-borne particulate in Urumqi,China,the upstream area of Asia dust.Atmospheric Environment,2008,42(4):776-787.
[26] Zhang D,Lee D-J,Pan X.Potentially harmful metals and metalloids in urban street dusts of Urumqi City:Comparison with Taipei City.Journal of the Taiwan Institute of Chemical Engineers,2014,45(5):2447-2450.
[27] Malm W C,Sisler J F,Huffman D,et al.Spatial and seasonal trends in particle concentration and optical extinction in the United-States.Journal of Geophysical Research-Atmospheres,1994,99(D1):1347-1370.
[28] Werkenthin M,Kluge B,Wessolek G.Metals in European roadside soils and soil solution—A review.Environmental Pollution,2014,189(0):98-110.
[29] Zhao M,Zhang Y,Ma W,et al.Characteristics and ship traffic source identification of air pollutants in China's largest port.Atmospheric Environment,2013,64:277-286.
[30] Harrison R M,Tilling R,Romero M S C,et al.A study of trace metals and polycyclic aromatic hydrocarbons in the roadside environment.Atmospheric Environment,2003,37(17):2391-2402.
[31] 张养梅.京津冀地区亚微米气溶胶特征及其变化的观测分析研究.中国气象科学研究院,2011.
[32] Cheng H,Gong W,Wang Z,et al.Ionic composition of submicron particles(PM 1)during the long-lasting haze period in January 2013 in Wuhan,Central China.Journal of Environmental Sciences-China,2014,26(4):810-817.
[33] Wang Y,Zhuang G S,Sun Y L,et al.The variation of characteristics and formation mechanisms of aerosols in dust,haze,and clear days in Beijing.Atmospheric Environment,2006,40(34):6579-6591.
[34] Sun Y L,Zhuang G S,Tang A H,et al.Chemical characteristics of PM 2.5 and PM 10 in haze-fog episodes in Beijing.Environmental Science&Technology,2006,40(10):3148-3155.
[35] Pitchford M,Malm W,Schichtel B,et al.Revised algorithm for estimating light extinction from IMPROVE particle speciation data.J Air Waste Manage Assoc,2007,57(11):1326-1336.
【注释】
[1]比表面积定义是:每克物质中所有颗粒总外表面积之和,国际单位是:m2·g-1。比表面积是衡量物质特性的重要参量,其大小与颗粒物的粒径、形状、表面缺陷及孔结构密切相关;同时,比表面积大小对物质其他的许多物理及化学性能会产生很大影响,特别是随着颗粒粒径的变小,比表面积已成为衡量物质性能的一项非常重要的参量,如在目前广泛应用的纳米材料中。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。