TSP和PM 2.5的浓度,在4月2日分别达到最高值1 340和383μg·m-3,位居上海自2002年以来所有记录值的最高值。沙尘气溶胶中的矿物质(mineral matter,MM)、海盐气溶胶(sea salt aerosol,SSA)和无机二次污染物(inorganic secondary,IS),可根据以下公式来计算:[MM]=[Al]/0.08;[SSA]=([Na+]+[Cl-])×1.176[23];[IS]=[NH 4+]+0.922[SO24-]+[NO 3-][24],如表14-4所示。MM与PM 2.5的比值,从3月28日的13%,上升到4月2日的70%,在峰值日后恢复到16%;而MM与TSP的比值,在此阶段的变化走向为37%、64%和15%。MM在PM 2.5和TSP中的浓度,在峰值日分别上升了25.1和15.6倍。PM 2.5中SSA的浓度,在4月2日上升到10.9μg·m-3,是3月31日的7.3倍。TSP中SSA的浓度,在4月2日上升到19.9μg·m-3,为3月31日的9倍。值得注意的是,SSA和MM在PM 2.5和TSP中的比值变化不同,对PM 2.5的浓度影响大于对TSP的浓度影响。SSA在PM 2.5中的比值,在沙尘到达上海之前的2007年3月31日为1%,与4月2日的2%~3%明显不同。然而,SSA在TSP中的比值,在2007年4月2日为1%,与沙尘日之前与之后的1%~2%相差不多。上述结果表明,在高沙尘气溶胶污染阶段,沙尘是先经过海洋,再返回上海。上述SSA在PM 2.5中和TSP的比值在这一阶段各个相应时间节点上的变化和差异,也说明了海盐气溶胶更多地存在于细颗粒物中。因此,此次长距离传输而来的沙尘,是不仅携带矿物气溶胶而且携带海盐气溶胶到上海的大气气溶胶。PM 2.5中的IS浓度,从3月28日的7.5μg·m-3上升至4月2日的20.1μg·m-3,TSP中的IS浓度从11.6上升至60.0μg·m-3。尽管IS在PM 2.5和TSP中的浓度,在沙尘日都随着PM总量的迅速增加而增加,但是其与PM 2.5和TSP的比值都减少了。
表14-4 上海本次沙尘污染阶段中3种PM 2.5和TSP主要成分的浓度与比例
(续表)
2007年3月28日为沙尘天气前无沙日的代表。4月1日上海由于下雨无样本。
综上所述,此次上海的高沙尘污染,来自内蒙古和蒙古戈壁沙漠,途经呼和浩特、多伦、连云港、泰山和东海等地,最后传输到上海。比较上海、多伦和塔中气溶胶中的Ca/Al比值表明,本次影响上海的高浓度沙尘,来自中国北部戈壁。从2002年开展PM 10常规监测以来,上海最严重沙尘污染日的日均PM 10浓度高达648μg·m-3,API为500。最低能见度小于2.0 km,它对应于所出现的最低SO 2/PM 10(0.066)、NO 2/PM 10(0.077)、PM 2.5/PM 10(15.5%)比值。SO2/PM 10、NO 2/PM 10、PM 2.5/PM 10可用作区分上海沙尘污染日和非沙尘污染日的重要指标。沙尘输送途径中各采样点的Ca/Al比值以及PM 10浓度,可作为追踪沙尘来源的重要示踪信息。在此次特定的沙尘事件中,上海PM 2.5和TSP中的矿物气溶胶在大幅度上升的同时,其中的海盐气溶胶浓度均显著上升,表明沙尘由中国北方先进入中国东部海域,而后再返回大陆进入上海,从而将海盐气溶胶从海洋带入上海。海盐气溶胶和矿物气溶胶在PM 2.5和TSP中比值的不同变化,表明沙尘传输先经过海洋再返回大陆,沙尘气溶胶和海盐气溶胶双重影响上海大气气溶胶的理化特性与上海的空气质量。
[1] Duce R A,Liss P S,Merrill J T,et al.The atmospheric input of trace species to the world ocean.Global Biogeochemical Cycles,1991,5(3):193-259.
[2] Arimoto R,Ray B J,Lewis N F,et al.Mass-particle size distributions of atmospheric dust and the dry deposition of dust to the remote ocean.Journal of Geophysical Research-Atmospheres,1997,102(D13):15867-15874.
[3] Zhang K,Gao H.The characteristics of Asian-dust storms during 2000-2002:From the source to the sea.Atmospheric Environment,2007,41(39):9136-9145.
[4] Zhao T L,Gong S L,Zhang X Y,et al.Asian dust storm influence on North American ambient PM levels:observational evidence and controlling factors.Atmospheric Chemistry and Physics,2008,8(10):2717-2728.
[5] Zhuang G S,Guo J H,Yuan H,et al.The compositions,sources,and size distribution of the dust storm from China in spring of 2000 and its impact on the global environment.Chinese Science Bulletin,2001,46(11):895-901.
[6] Wang Y,Zhuang G S,Sun Y L,et al.The variation of characteristics and formation mechanisms of aerosols in dust,haze,and clear days in Beijing.Atmospheric Environment,2006,40(34):6579-6591.
[7] Guo J,Rahn K A,Zhuang G S.A mechanism for the increase of pollution elements in dust storms in Beijing.Atmospheric Environment,2004,38(6):855-862.
[8] Guo Z G,Feng J L,Fang M,et al.The elemental and organic characteristics of PM 2.5 in Asian dust episodes in Qingdao,China,2002.Atmospheric Environment,2004,38(6):909-919.
[9] Lee C T,Chuang M T,Chan C C,et al.Aerosol characteristics from the Taiwan aerosol supersite in the Asian yellow-dust periods of 2002.Atmospheric Environment,2006,40(18):3409-3418.
[10] Chuang M T,Fu J S,Jiang C J,et al.Simulation of long-range transport aerosols from the Asian Continent to Taiwan by a southward Asian high-pressure system.Science of the Total Environment,2008,406(1-2):168-179.
[11] Cao J J,Lee SC,Zheng X D,et al.Characterization of dust storms to Hong Kong in April 1998.Water,Air&Soil Pollution:Focus,2003,3(2):213-229.(www.xing528.com)
[12] Lee B K,Jun N Y,Lee H K.Comparison of particulate matter characteristics before,during,and after Asian dust events in Incheon and Ulsan,Korea.Atmospheric Environment,2004,38(11):1535-1545.
[13] Park M H,Kim Y P,Kang C-H.Aerosol composition change due to dust storm:Measurements between 1992 and 1999 at Gosan,Korea.Water,Air& Soil Pollution:Focus,2003,3(2):117-128.
[14] Zhou M,Okada K,Qian F,et al.Characteristics of dust-storm particles and their long-range transport from China to Japan—Case studies in April 1993.Atmospheric Research,1996,40(1):19-31.
[15] Ma C J,Kasahara M,Holler R,et al.Characteristics of single particles sampled in Japan during the Asian dust-storm period.Atmospheric Environment,2001,35(15):2707-2714.
[16] Fu Q Y,Zhuang G S,Wang J,et al.Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta,China.Atmospheric Environment,2008,42(9):2023-2036.
[17] Qian W H,Tang X,Quan L S.Regional characteristics of dust storms in China.Atmospheric Environment,2004,38(29):4895-4907.
[18] Sun J M,Zhang M Y,Liu T S.Spatial and temporal characteristics of dust storms in China and its surrounding regions,1960-1999:Relations to source area and climate.Journal of Geophysical Research-Atmospheres,2001,106(D10):10325-10333.
[19] Sun Y L,Zhuang G S,Huang K,et al.Asian dust over northern China and its impact on the downstream aerosol chemistry in 2004.Journal of Geophysical Research-Atmospheres,2010,115(D7):3421-3423.
[20] Zhang W J,Zhuang G S,Huang K,et al.Mixing and transformation of Asian dust with pollution in the two dust storms over the northern China in 2006.Atmospheric Environment,2010,44(28):3394-3403.
[21] Sun Y L,Zhuang G S,Ying W,et al.The air-borne particulate pollution in Beijing—Concentration,composition,distribution and sources.Atmospheric Environment,2004,38(35):5991-6004.
[22] Huang K,Zhuang G S,Li J A,et al.Mixing of Asian dust with pollution aerosol and the transformation of aerosol components during the dust storm over China in spring 2007.Journal of Geophysical Research-Atmospheres,2010,115(D7):doi:10.1029/2009JD013145.
[23] Chan Y C,Simpson R W,Mctainsh G H,et al.Characterisation of chemical species in PM 2.5 and PM 10 aerosols in Brisbane,Australia.Atmospheric Environment,1997,31(22):3773-3785.
[24] Turpin B J,Lim H J.Species contributions to PM 2.5 mass concentrations:Revisiting common assumptions for estimating organic mass.Aerosol Science and Technology,2001,35(1):602-610.
【注释】
[1]国控监测点位是指中国国家环境保护部所确定和具体管理的监测点。
[2]mb:毫巴,为非法定压强单位。1 mb=100 Pa。
[3]露点是指在气压不变、水汽无增减条件下空气中水汽冷却达到饱和时的温度。在此温度下,凝结的水飘浮于空中成为雾,沾在固体表面则为露,露点因此得名。气温接近露点意味着空气湿度接近饱和。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。