首页 理论教育 气溶胶酸碱性-大气新论

气溶胶酸碱性-大气新论

时间:2023-09-24 理论教育 版权反馈
【摘要】:沙尘气溶胶的碱性,主要取决于其所含的CaCO 3。如在北京春季,TSP气溶胶的平均p H值为6.47,高于PM 2.5气溶胶的5.95,而且它们的值均高于年平均p H值5.57[16]。由图可见,无论在TSP还是PM 2.5中,p H值和Ca2+浓度都呈明显的指数相关,相关系数r分别高达0.85和0.73,证实了可溶性Ca2+对气溶胶酸性的缓冲作用。可见,气溶胶正常范围内的Ca2+,对气溶胶酸性的缓冲作用在1个p H值左右。

气溶胶酸碱性-大气新论

图9-14 2004年春季6个采样点的可溶性Ca2+(μg·m-3)与p H值的关系(彩图见下载文件包,网址见14页脚注

气溶胶浸提液的p H值,可作为直接度量气溶胶酸度的参数。气溶胶中SO 24-、NO 3-、Cl-以及有机酸等酸性组分,致使其酸性增强,即p H值降低;而NH 4+、Ca2+、Mg2+等碱性水溶性组分,则提高其p H值。沙尘气溶胶的碱性,主要取决于其所含的CaCO 3。由于粗颗粒中碳酸盐含量较之细颗粒物高,故颗粒的粒径越大,其碱性越强,对环境酸化的缓冲能力也越强[15]。图9-14给出了2004年春季6个采样点TSP和PM 2.5中可溶性Ca2+与p H的关系。从图中可以看出,TSP气溶胶的碱性,要强于PM 2.5,即粗颗粒的碱性高于细颗粒物。如在北京春季,TSP气溶胶的平均p H值为6.47,高于PM 2.5气溶胶的5.95,而且它们的值均高于年平均p H值5.57[16]。这说明,春季沙尘有助于减轻北京大气日益严重的酸化倾向。图9-14也显示了p H值随Ca2+浓度的增加而增大,说明来源于矿物气溶胶的Ca2+,一直以来对北京和整个中国北部的降水酸度,起着重要的缓冲与中和作用。多伦榆林位于沙漠源区,因此该两地最能体现沙尘中Ca2+对大气气溶胶酸度的影响。图9-15分别显示了多伦和榆林两地p H与Ca2+的关系。由图可见,无论在TSP还是PM 2.5中,p H值和Ca2+浓度都呈明显的指数相关,相关系数r分别高达0.85和0.73,证实了可溶性Ca2+对气溶胶酸性的缓冲作用。如果TSP中Ca2+浓度变化范围为0~15μg·m-3,则根据回归方程计算可得p H的变化范围为5.1~6.4。同样,如果PM 2.5中Ca2+浓度为0~9μg·m-3,则p H的变化范围为5.4~6.4。可见,气溶胶正常范围内的Ca2+,对气溶胶酸性的缓冲作用在1个p H值左右。Z.F.Wang等人[17]通过空气质量预报模式,模拟了雨水中的p H值,以及沙尘气溶胶对东亚酸雨的中和影响。结果显示,这种中和作用在春季最为显著,可使中国北部雨水的p H值增加2左右。此结果与本研究的结果都说明了,沙尘气溶胶的入侵,在一定程度上有利于减轻北方城市的酸化。

图9-15 多伦和榆林两地总p H值与Ca2+(μg·m-3)的关系(彩图见下载文件包,网址见14页脚注)

综上所述,本研究同步采集并分析2004年春季沙尘长途传输途中,6个采样点的TSP和PM 2.5系统分析了中国春季气溶胶的空间分布和沙尘对城市大气颗粒物的影响。中国北方主要城市的大气颗粒物,具有明显的区域性。根据其区域特征,可分为北部粉尘区、沿海区、内陆途经区、西部粉尘区和东北粉尘区。沙尘对源区附近城市影响最大,并随着传输距离的增加而减弱,即榆林、多伦>北师大、密云青岛上海。沙尘对源区粗颗粒物化学组分的影响,要大于细颗粒物;而在远离源区的城市,则对细颗粒物中化学组分的影响,显著于粗颗粒物。沙尘一方面混合了沿途大量的污染物,并携带到下游地区;另一方面也对污染物产生清除作用。不同的沙尘由于其来源和传输路径的不同,对城市大气颗粒物中化学组分的影响,也有明显差别。中国气溶胶具有明显的空间分布。矿物元素以北师大最高,榆林次之,青岛最低。中国不同地区的Ca/Al比值有显著差异,因此Ca和Al可用作元素示踪体系,来判断沙尘的来源。污染元素的空间分布呈现多样化。总体来说,多伦地区的污染元素浓度最低,发达城市青岛、上海和北京的浓度相对较高,具体为Zn在青岛,Pb在北师大,Cu在上海达到最高。污染元素在PM 2.5中的富集程度,按青岛>上海>北京>北师大>榆林>多伦依次降低。二次离子以榆林和多伦浓度最低,其他地区按密云<北师大<青岛<上海依次增加。沙尘过程对应着低的NO-3/SO2-4值,且最低值出现在沙尘峰过后。气溶胶中的Ca2+,对城市酸化具有强烈的缓冲作用,可使气溶胶的p H值增加1左右。

参考文献

[1] In H J,Park S U.A simulation of long-range transport of yellow sand observed in April 1998 in Korea.Atmospheric Environment,2002,36(26):4173-4187.

[2] Husar R B,Tratt D M,Schichtel B A,et al.Asian dust events of April 1998.Journal of Geophysical Research-Atmospheres,2001,106(D16):18317-18330.

[3] Mori I,Nishikawa M,Tanimura T,et al.Change in size distribution and chemical composition of kosa(Asian dust)aerosol during long-range transport.Atmospheric Environment,2003,37(30):4253-4263.

[4] Duce R A,Unni C K,Ray B J,et al.Long-range atmospheric transport of soil dust from Asia to the tropical north pacific:temporal variability.Science,1980,209(4464):1522-1524.

[5] Zhuang G S,Yi Z,Duce R A,et al.Link between iron and sulphur cycles suggested by detection of Fe(Ⅱ)in remote marine aerosols.Nature,1992,355(6360):537-539.

[6] Martin J H,Coale K H,Johnson K S,et al.Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean.Nature,1994,371(6493):123-129.(www.xing528.com)

[7] Huebert B J,Bates T,Russell P B,et al.An overview of ACE-Asia:Strategies for quantifying the relationships between Asian aerosols and their climatic impacts.Journal of Geophysical Research-Atmospheres,2003,108(D23).

[8] Zhang X Y,Gong S L,Shen Z X,et al.Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia:1.Network observations.Journal of Geophysical Research-Atmospheres,2003,108(D9).

[9] Arimoto R,Zhang X Y,Huebert B J,et al.Chemical composition of atmospheric aerosols from Zhenbeitai,China,and Gosan,South Korea,during ACE-Asia.Journal of Geophysical Research-Atmospheres,2004,109(D19).

[10] Liu C L,Zhang J,Shen Z B.Spatial and temporal variability of trace metals in aerosol from the desert region of China and the Yellow Sea.Journal of Geophysical Research-Atmospheres,2002,107(D14).

[11] Gao Y,Arimoto R,Duce R A,et al.Input of atmospheric trace elements and mineral matter to the Yellow Sea during the spring of a low-dust year.Journal of Geophysical Research-Atmospheres,1992,97(D4):3767-3777.

[12] Guo J,Rahn K A,Zhuang G S.A mechanism for the increase of pollution elements in dust storms in Beijing.Atmospheric Environment,2004,38(6):855-862.

[13] Mason B,Moore C B.The principles of geochemistry.4th ed.New York:John Wiley &Sons,1982.

[14] Zhou X J,Xu X D,Yan P,et al.Dynamic characteristics of spring sandstorms in 2000.Science in China Series D-Earth Sciences,2002,45(10):921-930.

[15] Arimoto R,Duce R A,Savoie D L,et al.Relationships among aerosol constituents from Asia and the North Pacific Ocean during PEM-West A.Journal of Geophysical Research,1996,101(D1):2011-2023.

[16] Wang Y,Zhuang G S,Tang A H,et al.The ion chemistry and the source of PM 2.5 aerosol in Beijing.Atmospheric Environment,2005,39(21):3771-3784.

[17] Wang Z F,Akimoto H,Uno I.Neutralization of soil aerosol and its impact on the distribution of acid rain over East Asia:Observations and model results.Journal of Geophysical Research-Atmospheres,2002,107(D19).

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈