在这次特大沙尘暴期间,所收集的气溶胶中再次检测到较高浓度的Fe(Ⅱ)。在特大沙尘暴当日的2个气溶胶样品中,Fe(Ⅱ)的绝对量分别高达2.45和0.65μg·m-3,占总Fe量的5.3%和1.3%。在2000年沙尘暴的气溶胶中,曾检测到Fe(Ⅱ)绝对量1.8~4.3μg·m-3,占总Fe量的1.4%~2.6%[23]。值得注意的是,此次沙尘暴期间及前后,北京气溶胶中的Fe(Ⅱ)和SO 24-浓度呈现了较好的正相关(图8-4)。Fe(Ⅱ)很可能是沙尘中的Fe(Ⅲ)被大气中包括低价S在内的各种还原剂所还原的产物,而低价S则被氧化为硫酸盐[34]。在特大沙尘暴的气溶胶中,Fe(Ⅱ)的发现及其与SO 24-浓度的正相关,再次提供了第5章所阐述的大气海洋物质交换中Fe-S耦合反馈机制的现场监测证据。气溶胶从亚洲大陆途经北京,最后到达北太平洋,其中的Fe(Ⅱ)在不断增加。气溶胶中的Fe(Ⅲ),还原生成可为海洋表层生物吸收的Fe(Ⅱ)。亚洲沙尘暴提供了对中国沿海以至北太平洋浮游生物所必需的Fe(Ⅱ)。海洋表层的浮游生物随Fe(Ⅱ)的增加而增加,导致其排放物二甲基硫(DMS)的增加。随着DMS的增加,其在大气中氧化所生成的S(Ⅳ)及硫酸盐气溶胶也增加,同时这一氧化还原过程又会致使Fe(Ⅱ)增加。如此反复循环不已。硫酸盐气溶胶的大量增加,因其对太阳辐射的负强迫,会对全球产生降温效应。大气和海洋中的这一Fe-S循环耦合反馈机制,可能直接影响全球的气候变化。
图8-4 沙尘暴期间及常日北京气溶胶中的Fe(Ⅱ)和SO24-浓度(彩图见下载文件包,网址见14页脚注)
[1] 庄国顺.沧海桑田——中国的沙尘暴、气溶胶与全球生物地球化学循环.科学中国人,2003(6):38-42.
[2] Prospero J M,Lamb P J.African droughts and dust transport to the Caribbean:Climate change implications.Science,2003,302(5647):1024-1027.
[3] Riley J.Chemical oceanography,SEAREX:the Sea/Air Exchange Program.New York:Academic Press,1989.
[4] Arimoto R,Duce R A,Savoie D L,et al.Trace elements in aerosol particles from Bermuda and Barbados:Concentrations,sources and relationships to aerosol sulfate.Journal of Atmospheric Chemistry,1992,14(1-4):439-457.
[5] Uematsu M,Duce R A,Prospero J M,et al.Transport of mineral aerosol from Asia over the North Pacific Ocean.Journal of Geophysical Research-Oceans,1983,88(C9):5343-5352.
[6] Blank M,Leinen M,Prospero J M.Major Asian aeolian inputs indicated by the mineralogy of aerosols and sediments in the western North Pacific.Nature,1985,314(6006):84-86.
[7] Reggie R.China's dust storms raise fears of impending catastrophe.National Geographic News,USA,2001.
[8] Zhang X Y,Arimoto R,An Z S.Dust emission from Chinese desert sources linked to variations in atmospheric circulation.Journal of Geophysical Research-Atmospheres,1997,102(D23):28041-28047.
[9] Andreae M O.Climatic effects of changing atmospheric aerosol levels.World Survey of Climatology,1995,16:347-398.
[10] Duce R A.Sources,distributions,and fluxes of mineral aerosols and their relationship to climate.Aerosol Forcing of Climate,1995,6:43-72.
[11] Martin J H,Coale K H,Johnson K S,et al.Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean.Nature,1994,371(6493):123-129.
[12] Zhuang G S,Duce R A,Kester D R.The dissolution of atmospheric iron in surface seawater of the open ocean.Journal of Geophysical Research-Oceans,1990,95(C9):16207-16216.
[13] Zhuang G S,Yi Z,Duce R A,et al.Link between iron and sulphur cycles suggested by detection of Fe(Ⅱ)in remote marine aerosols.Nature,1992,355(6360):537-539.
[14] Zhuang G S,Guo J H,Yuan H,et al.Coupling and feedback between iron and sulphur in air-sea exchange.Chinese Science Bulletin,2003,48(11):1080-1086.
[15] Goudie A S,Middleton N J.Saharan dust storms:Nature and consequences.Earth-Science Reviews,2001,56(1-4):179-204.
[16] 刘毅,周明煜.北京及近中国海春季沙尘气溶胶浓度变化规律的研究.环境科学学报,1999,19(6):642-647.
[17] Zhang X Y,Gong S L,Shen Z X,et al.Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia:1.Network observations.Journal of Geophysical Research-Atmospheres,2003,108(D9).(www.xing528.com)
[18] Zhang X Y,Gong S L,Arimoto R,et al.Characterization and temporal variation of Asian dust aerosol from a site in the northern Chinese deserts.Journal of Atmospheric Chemistry,2003,44(3):241-257.
[19] Fang M,Zheng M,Wang F,et al.The long-range transport of aerosols from northern China to Hong Kong—a multi-technique study.Atmospheric Environment,1999,33(11):1803-1817.
[20] Liu C L,Zhang J,Shen Z B.Spatial and temporal variability of trace metals in aerosol from the desert region of China and the Yellow Sea.Journal of Geophysical Research-Atmospheres,2002,107(D14).
[21] Tsuang B J,Lee C T,Cheng M T,et al.Quantification on the source/receptor relationship of primary pollutants and secondary aerosols by a Gaussian plume trajectory model:PartⅢ-Asian dust-storm periods.Atmospheric Environment,2003,37(28):4007-4017.
[22] Uematsu M,Yoshikawa A,Muraki H,et al.Transport of mineral and anthropogenic aerosols during a Kosa event over East Asia.Journal of Geophysical Research-Atmospheres,2002,107(D7).
[23] 周秀骥,徐祥德,颜鹏,等.2000年春季沙尘暴动力学特征.中国科学(D辑:地球科学),2002(4):327-334.
[24] Zhuang G S,Guo J H,Yuan H,et al.The compositions,sources,and size distribution of the dust storm from China in spring of 2000 and its impact on the global environment.Chinese Science Bulletin,2001,46(11):895-901.
[25] 张仁健,王明星,浦一芬,等.2000年春季北京特大沙尘暴物理化学特性的分析.气候与环境研究,2000(3):259-266.
[26] 王玮,岳欣,刘红杰,等.北京市春季沙尘暴天气大气气溶胶污染特征研究.环境科学学报,2002(4):494-498.
[27] 袁蕙,王瑛,庄国顺.气溶胶、降水中的有机酸、甲磺酸及无机阴离子的离子色谱同时快速测定法.分析测试学报,2003(6):11-14.
[28] Yi Z,Zhuang G S,Brown P R,et al.High-performance liquid chromatographic method for the determination of ultratrace amounts of iron(Ⅱ)in aerosols,rainwater,and seawater.Analytical Chemistry,1992,64(22):2826-2830.
[29] Taylor S R,Mclennan S M.The continental crust:Its composition and evolution.Oxford:Blackwell Scientific Publications,1985.
[30] Arimoto R,Duce R A,Savoie D L,et al.Relationships among aerosol constituents from Asia and the North Pacific during PEM-West A.Journal of Geophysical Research-Atmospheres,1996,101(D1):2011-2023.
[31] Gao Y,Arimoto R,Duce R A,et al.Input of atmospheric trace elements and mineral matter to the Yellow Sea during the spring of a low-dust year.Journal of Geophysical Research-Atmospheres,1992,97(D4):3767-3777.
[32] Hseung Y,Jackson M L.Mineral composition of the clay fraction:Ⅲof some main soil groups of China.Soil Science Society of America Proceedings,1952,16(3):294-297.
[33] Guo J,Rahn K A,Zhuang G S.A mechanism for the increase of pollution elements in dust storms in Beijing.Atmospheric Environment,2004,38(6):855-862.
[34] Zhuang G S,Yi Z,Duce R A,et al.Erratum:“Chemistry of iron in marine aerosols”.Global Biogeochemical Cycles,1993,7(3):711-711.
【注释】
[1]这里元素的粒径是指某一元素所在颗粒物的粒径,粒径分布是指在特定粒径范围的颗粒物中该元素的质量浓度分布。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。