R.J.Charlson等人[28]提出海洋中排放的二甲基硫(DMS),在大气中被氧化成硫酸盐,并成为云凝结核,从而可能形成一个影响全球气候的正反馈系统。此反馈系统的很重要的一步是,S(Ⅳ)异相氧化成硫酸盐,而这一步骤和Fe(Ⅲ)与OH-的络合物发生还原反应,产生OH·自由基[13,14,20]密切相关。在中途岛地区的大气中,非海盐硫酸盐气溶胶的平均浓度约为5.5 nmol·m-3[29];而在中途岛的气溶胶中,Fe(Ⅱ)的浓度约为0.3~2.3 nmol·m-3。如果大气中一对Fe(Ⅲ)→Fe(Ⅱ)的还原转化,经由产生一个OH·自由基,把一对S(Ⅳ)→S(Ⅵ)氧化,那么在中途岛地区经由气溶胶的Fe(Ⅲ)→Fe(Ⅱ)还原转化所产生的非海盐硫酸盐气溶胶,将占其总量的大约3%~20%。M.O.Andreae等人[30]发现,海洋气溶胶的单颗粒物常常是海盐、矿物颗粒物和酸性的硫酸盐气溶胶之混合物。因此,远洋气溶胶中的Fe,可能涉及2个重要的环境过程。第一,在长距离传输过程中,转化产生相对可溶的Fe(Ⅱ),便于远洋地区海水表层浮游生物的吸收利用。如果Fe是某些大洋地区的限制营养元素,那么它将影响这些水体中DMS的生产力。第二,大气中Fe(Ⅲ)的光还原反应可能是大气中关键氧化剂即OH·自由基之重要来源,而OH·自由基对低价硫的氧化过程起重要作用。例如,可以把亚硫酸氢盐氧化成亚硫酸根自由基,进而引发其他氧化过程,生成硫酸盐[31,32]。
图5-4 气溶胶长途传输途中及大气海洋物质交换中的Fe-S耦合反馈机制
因此,在大气和海洋的海-气交换过程中,存在着与产生Fe(Ⅱ)和OH·自由基有关的2个潜在的正反馈机制。大气中的沙尘提供了Fe(Ⅲ),其在气溶胶中被还原而产生OH·自由基和Fe(Ⅱ)。更多的Fe(Ⅱ)将导致在海洋中产生更多的DMS,而DMS的增加将产生更多的SO2和酸性的硫酸盐。同时,更多的OH·自由基又会氧化还原性S,而产生更多的酸性硫酸盐。酸性的硫酸盐可导致产生更多可溶性Fe(Ⅲ)。2个反馈机制结果又带来了更多的Fe(Ⅱ)和OH·自由基。如此反复循环不已。这一反馈体系可能影响一些海洋地区的生物生产力以及气候变化。图5-4展示了气溶胶中的Fe和S从陆地上空经长距离传输,沉降于遥远大洋中,经由OH·自由基的相互耦合转化机制。
参考文献
[1] Duce R A.The impact of atmosphere nitrogen,phosphorus,and iron species on marine biological productivity//Buat-Menard P.The role of air-sea exchange in geochemical cycling.Dordrecht,Holland:D.Reidel,1986:497-529.
[2] Martin J H,Gordon R M.Northeast Pacific iron distribution in relation to phytoplankton productivity.Deep Sea Res,1988,35:177-196.
[3] Martin J H,Fitzwater S E.Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic.Nature,1988,321:341-343.
[4] Martin J H,Gordon R M,Fitzwater S E,et al.VERTEX:Phytoplankton/iron studies in the Gulf of Alaska.Deep Sea Res,1989,36:649-680.
[5] Martin J H,Gordon R M,Fitzwater S E.Iron in antarctic waters.Nature,1990,345:156-158.
[6] Stumm W,Morgan J J.Aquatic chemistry:2nd ed.New York:Wiley-Interscience,1981.
[7] Colin J L,Jaffrezo J L,Gros J M.Solubility of major species in precipitation:Factors and variation.Atmos Environ,1990,24A:537-544.
[8] Chester R,Murphy K J T.Metals in the marine atmosphere//Furness R W,Rainbow P S.Heavy metals in the marine environment.Boca Raton,Fla:CRC Press,1990:27-49.
[9] Gatz D F,Warner B K,Chu L-C.Solubility of metal ions in rainwater//Hicks B B.Deposition,both wet and dry.Stoneham,Mass:Butterworth,1984:133-151.
[10] Hadge V,Johnson S R,Goldberg E D.Influence of atmospherically transported aerosols on surface ocean water composition.Geochem J,1978,12:7-20.
[11] Zhuang G,Duce R A,Kester D R.The dissolution of atmospheric iron in the surface seawater of the open ocean.J Geophys Res,1990,95,16:207-216.
[12] Behra P,Sigg L.Evidence for redox cycling of iron in atmospheric water droplets.Nature,1990,344:419-421.
[13] Zhuang G,Yi Z,Duce R A,et al.Link between iron and sulfur suggested by the detection of Fe(Ⅱ)in remote marine aerosols.Nature,1992,355:537-539.
[14] Graedel T E,Weschler C J,Mandich M L.Influence of transition metal complexes on atmospheric droplet acidity.Nature,1985,317:240-242.
[15] Weschler C J,Mandish M L,Graedel T E.Speciation,photosensitivity,and reaction of transition metal ions in atmospheric droplets.J Geophys Res,1986,91:5189-5204.(www.xing528.com)
[16] Faust B C,Hoigne J.Photolysis of Fe(Ⅲ)-hydroxy complexes as sources of OH radicals in cloud,fog and rain.Atmos Environ,1990,24:79-89.
[17] Zhuang G,Guo J,Yuan H,et al.The compositions,sources,and size distribution of the dust storm from China in spring of 2000 and its impact on the global environment.China Science Bulletin,2001,46(1):895-901.
[18] Yuan H,Wang Y,Zhuang G.Simultaneous determination of organic acids,methanesulfonic acid and inorganic anions in aerosol and precipitation samples by ion chromatography.Journal of Instrumental Analysis(in Chinese),22(6):11-14.
[19] Yi Z,Zhuang G,Brown P R,et al.High-performance liquid chromatographic method for the determination of ultratrace amounts of iron(Ⅱ)in aerosols,rainwater,and seawater.Anal Chem,1992,64(22):2826-2830.
[20] Zhuang G,Yi Z,Duce R A,et al.Chemistry of iron in marine aerosols.Global Biogeochemical Cycles,1992,6(2):161-173.
[21] Faust B C,Hoffmann M R.Photoinduced reductive dissolution ofα-iron oxide(α-Fe2 O 3)by bisulfite.Envir Sci Technol,1986,20:943-948.
[22] Hoffman G L,Duce R A,Hoffman E J.Trace metals in the Hawaiian marine atmosphere.J Geophys Res,1972,77:5322-5329.
[23] Maring H B,Patterson C C,Settle D.Vol 10.//Riley J P,Chester R,Duce R A.Chemical Oceanography.London:Academic,1990:84-106.
[24] Warneck P.Chemistry of the natural atmosphere:Second edition.San Diego:Academic,2000.
[25] Zhu X R,Prospero J M,Savoie D L,et al.The calculated solubilities of ferric iron in internallymixed aerosols containing mineral particles and hygroscopic salts at ambient relative humidities,Eos,Trans.AGU,1990,71:1226.
[26] Jacob D J,Gottlieb E W,Prather M J.Chemistry of a polluted cloudy boundary layer.J Geophys Res,1989,94:12975-13002.
[27] Graedel T E,Weschler C J,Mandich M L.Kinetic model studies of atmospheric droplet chemistry.2.Homogeneous transition metal chemistry in raindrops.J Geophys Res,1986,91:5205-5221.
[28] Charlson R J,Lovelock J E,Andreae M O,et al.A climate feedback loop of sulfate aerosols.Nature,1987,326:655-661.
[29] Savoie D L,Prospero J M,Saltzman E S.Nitrate,non-sea salt sulfate and mathanesulfonate over the Pacific Ocean//Riley J P,Chester R,Duce R A.Chemical Oceanography:vol 10.San Diego,Calif:Academic,1989:219-250.
[30] Andreae M O,Charlson R J,Bruynseels F,et al.Internal mixing of sea salt,silicate and excess sulfate in marine aerosols.Science,1986,232:1620-1623.
[31] Martin L R,Hill M W,Tai A F,et al.The iron catalyzed oxidation of sulfur(Ⅳ)in aqueous solution:Differing effects of organics at high and low p H.J Geophys Res,1991,96:3085-3097.
[32] Huie R E,Neta P.Rate constants for some oxidations of sulfur(Ⅳ)by radicals in aqueous solutions.Atmos Envir,1987,21:1743-1747.
【注释】
[1]以下用°N表示北纬多少度,用°E表示东经多少度。相应的′及″后加N或E,则是表示北纬或东经多少分及多少秒(角度)。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。