在远洋气溶胶中,Al的含量约占来自沙尘的矿物质的8%。根据这一比例,可以推算海洋气溶胶的总质量浓度。太平洋上空海洋气溶胶的浓度分布,可大致分为5个区域[53]。第一个区域是高浓度区,位于高纬度的北太平洋。春天来自亚洲的沙尘暴,形成了这一区域的沙尘高峰。秋天的浓度次之,冬夏最低。第二个区域是赤道太平洋地区,全年都是低浓度,偶尔在春天由亚洲的沙尘暴而形成的沙尘高峰,可以抵达这一区域。第三个区域是南太平洋中心。这一区域浓度很低,少量沙尘从北太平洋进入南太平洋。第四个区域是位于澳大利亚附近的西南太平洋地区。在这一区域可观测到来自澳大利亚沙漠,随季节而变化的中高浓度的沙尘。第五个区域是高纬度区域的南大洋以及南极洲沿岸地区。这一区域的气溶胶浓度极低。来自亚洲的沙尘气溶胶影响,远远大于来自澳大利亚沙漠的沙尘。
气溶胶最终沉降于大洋。在高浓度及高雨量期间,其沉降量最大。约80%的气溶胶由湿沉降(如雨水冲刷)进入大洋。由于高纬度区域的雨量低,而低纬度的赤道区域虽然雨量高,但是气溶胶含量低,因此气溶胶在整个大洋沉降的空间分布较为均匀。不过,太平洋上空的气溶胶浓度及雨量时间分布,均具有极大的事件脉冲特性,这导致气溶胶年沉降量的很大部分,常常是在很短的时间内,由几个重大沙尘事件来完成的。北太平洋中途岛上约一半的年沙尘沉降量,发生于2个星期内。根据在中途岛及太平洋其他岛屿上的每天取样监测结果,每年的沙尘高峰仅有2~4 d。太平洋上绝大部分的沙尘沉降,发生在仅仅几天时间内。这一结果表明,亚洲的沙尘暴虽然每年只有短短几次或者短短几天,但对太平洋的沙尘沉降总量,以至全球的生态变化,有着至关重要的影响。由于大风发生和地表裸露时间耦合,黄土高原疏松的沙土、西北地区和内蒙古地区的沙漠,以及干旱与半干旱地区的荒漠,成为亚洲沙尘暴的来源地。人类所谓“征服”自然的不合理活动,导致地表荒漠化的急剧扩展,成为沙尘暴产生及其频率增加的重要因素。铺天盖地而来的沙尘,加之燃煤产生的SO2和迅速增长的机动车尾气排放,使中国中东部地区的大气污染犹如雪上加霜,自2013年以来频频发生大范围、高强度、持续性的严重雾霾。沙尘暴不仅横扫中国华北和部分华东地区的城市与乡村,甚至还沉降于北太平洋。来自亚洲沙漠的沙尘,最后约有一半被输送到中国海区,乃至遥远的北太平洋[55]。庄国顺等人对亚洲沙尘暴作了深入的研究,有以下重要发现[56,57]。①沙尘暴中所增加的污染物,主要来自沙尘暴所经过地区的二次扬尘,以及二次形成的硫酸盐气溶胶和有机物气溶胶,及其表面发生的多相反应,如对痕量污染元素的表面吸附或液相络合。②沙尘暴气溶胶在其长距离传输过程中,既输送比常日气溶胶高达数十倍的痕量污染元素,同时又输送比常日气溶胶高得多的Fe(Ⅱ),以及高出数十倍的、尚未被还原的Fe(Ⅲ)。这些细粒子即便在沙尘暴气候结束后的若干天内,还能滞留于大气中,进而传输到数百上千甚至上万千米以外。每年的沙尘暴时间虽短,但其浓度比平时高数十倍,由此输送至北太平洋地区的气溶胶量,占据全年输送量的绝大部分。可见,亚洲的沙尘暴不仅对局部地区的天气以至居民的身体健康,而且会对全球的气候变化带来重大影响。深入研究亚洲沙尘暴在长途传输途中与污染物气溶胶的混合和转化机制,及其在大洋中的最后归宿,不仅是促进中国经济发展和改善人们生活质量之急需,也是正视全球生态危机和全球环境变化问题之急需。
参考文献
[1] Gao Y,et al.Atmospheric non-sea-salt sulfate,nitrate and methanesulfonate over the China Sea.J Geophys Res[Atmos],1996,101(D7):12601-12611.
[2] Elliott S,et al.Motorization of China implies changes in Pacific air chemistry and primary production.Geophysical Research Letters,1997,24:2671-2674.
[3] Blank M M,et al.Major Asian aeolian inputs indicated by the mineralogy of aerosols and sediments in the western North Pacific.Nature,1985,314:84-86.
[4] Prospero J M,et al.Mineral aerosol transport to the Pacific Ocean.Chemical Oceanography,1989,10:188-218.
[5] Arimoto R,et al.Trace elements in aerosol particles from Bermuda and Barbados:Concentrations,sources and relationships to aerosol sulfate.J Atmos Chem,1992,14(1-4):439-457.
[6] Royston R.China's dust storms raise fears of impending catastrophe.National Geographic News,USA,2001-06-01.
[7] Uematsu M,et al.Transport of mineral aerosol from Asia over the North Pacific Ocean.J Geophys Res,1983,88:5343-5352.
[8] Martin J H,et al.Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic.Nature,1988,331:341-343.
[9] Duce R A.The impact of atmospheric nitrogen,phosphorus,and iron species on marine biological productivity//Buat-Menard P.The role of air-sea exchange in geochemical cycling.Reidel Press,1986.
[10] Saydam A C,Senyuva H Z.Deserts:Can they be the potential suppliers of bioavailable iron?Geophysical Research Letters,2002,29(11):19/1-19/3.
[11] Jickells T D,Spokes L J.IUPAC series on analytical and physical chemistry of environmental systems.Biogeochemistry of Iron in Seawater,2001,7:85-121.
[12] Zhuang G,Duce R A,Kester D R.The dissolution of atmospheric iron in the surface seawater of the open ocean.J Geophys Res,1990,95:16207-16216.
[13] Behra P,Sigg L.Evidence for redox cycling of iron in atmospheric water droplets.Nature,1990,344:419-421.
[14] Zhuang G,et al.Link between iron and sulfur cycles suggested by detection of iron(Ⅱ)in remote marine aerosols.Nature,1992,355(6360):537-539.
[15] Zhuang G,et al.Chemistry of iron in marine aerosols.Global Biogeochemical Cycles,1992,6(2):161-173.
[16] Zhuang G,et al.The absorption of dissolved iron on marine aerosol particles in surface waters of the open ocean.Deep-Sea Res,PartⅠ,1993,40(7):1413-1429.
[17] Martin J H,et al.Testing the iron in ecosystems of the equatorial Pacific Ocean.Nature,1994,371:123-129.
[18] Ridgwell A J,Maslin M A,Watson A J.Reduced effectiveness of terrestrial carbon sequestration due to an antagonistic response of ocean productivity.Geophysical Research Letters,2002,29(6):19/1-19/4.
[19] Lefevre N,Watson A J.Modeling the geochemical cycle of iron in the oceans and its impact on atmospheric CO2 concentrations.Global Biogeochemical Cycles,1999,13(3):727-736.
[20] Watson A J.Iron in the oceans:Influences on biology,geochemistry and climate.Progress in Environmental Science,1999,1(4):345-370.
[21] Watson A J,Bakker D C,Ridgwell A J,et al.Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO 2.Nature,2000,407(6805):730-733.
[22] Cooper D J,Watson A J,Nightingale P D.Large decrease in ocean-surface CO 2 fugacity in response to in situ iron fertilization.Nature,1996,383(6600):511-513.
[23] Watson A J,Law C S,Van Scoy K A,et al.Minimal effect of iron fertilization on sea-surface carbon dioxide concentrations.Nature,1994,371(6493):143-145.
[24] Gervais F,Riebesell U,Gorbunov M Y,et al.Changes in primary productivity and chlorophyll a in response to iron fertilization in the southern polar frontal zone.Limnology and Oceanography,2002,47(5):1324-1335.
[25] Hall J A,Safi K.The impact of in situ Fe fertilisation on the microbial food web in the Southern Ocean.Deep-Sea Research,PartⅡ:Topical Studies in Oceanography,2001,48(11-12):2591-2613.
[26] Coale K H,et al.A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean.Nature,1996,383:495-501.
[27] Boyd P W,et al.A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization.Nature,2000,407:695-699.
[28] Chu S,Elliott S,Maltrud M E.Global eddy permitting simulations of surface ocean nitrogen,iron,sulfur cycling.Chemosphere,2003,50(2):223-235.
[29] Ganeshram R S,Pedersen T F,Calvert S E,et al.Reduced nitrogen fixation in the glacial ocean inferred from changes in marine nitrogen and phosphorus inventories.Nature,2002,415(6868):156-159.(www.xing528.com)
[30] Milligan A J,Harrison P J.Effects of non-steady-state iron limitation on nitrogen assimilatory enzymes in the marine diatom Thalassiosira weissflogii(Bacillariophyceae).Journal of Phycology,2000,36(1):78-86.
[31] Berman-Frank I,Cullen J T,Shaked Y,et al.Iron availability,cellular iron quotas,and nitrogen fixation in Trichodesmium.Limnology and Oceanography,2001,46(6):1249-1260.
[32] Cullen J J.Oceanography:Iron,nitrogen and phosphorus in the ocean.Nature,1999,402(6760):372.
[33] Lenes J M,Darrow B P,Cattrall C,et al.Iron fertilization and the Trichodesmium response on the West Florida shelf.Limnology and Oceanography,2001,46(6):1261-1277.
[34] Fitzgerald J W.Marine aerosols:A review.Atmos Environ,1991,25:533-545.
[35] Galloway J N.Sulfur in the western North Atlantic Ocean atmosphere:Results from a summer 1998 ship/aircraft experiment.Global Biogeochemical Cycles,1990,4:349-365.
[36] Charlson R J,et al.A climate feedback loop of sulfate aerosols.Nature,1987,326:655-661.
[37] Charlson R J.Climate forcing by anthropogenic aerosols.Science,1992,255:423-430.
[38] Schwartz S E.The whitehouse effect-shortwave radiative forcing of climate by anthropogenic aerosols:An overview.J Aerosol Science,1996,27:359-382.
[39] Johnson K S.Iron supply and demand in the upper ocean:Is extraterrestrial dust a significant source of bioavailable iron?Global Biogeochemical Cycles,2001,15(1):61-63.
[40] Bishop J K B,Davis R E,Sherman J T.Robotic observations of dust storm enhancement of carbon biomass in the North Pacific.Science,2002,298(5594):817-821.
[41] Duce R A.The impact of atmosphere nitrogen,phosphorus,and iron species on marine biological productivity//Buat-Menard P.The role of air-sea exchange in geochemical cycling.Dordrecht,Holland:D.Reidel,1986:497-529.
[42] Faust B C,et al.Photolysis of Fe(Ⅲ)-hydroxy complexes as sources of OH radicals in cloud,fog and rain.Atmospheric Environment,1990,24:79-89.
[43] Zhuang G,et al.Iron(Ⅱ)in rainwater,snow,and surface seawater from a coastal environment.Mar Chem,1995,50(1-4):41-50.
[44] Uematsu M.Influence of aerosols originated form the Asian continent to the marine environment.A view from biogeochemical cycles.Earozoru Kenkyu(in Japanese),1999,14(3):209-213.
[45] Warneck P.Chemistry of the natural atmosphere,2nd edition.New York:Academic Press,2000:499-502.
[46] Turner S M,Nightingale P D,Spokes L J,et al.Increased dimethyl sulfide concentrations in sea water from in situ iron enrichment.Nature,1996,383(6600):513-517.
[47] Zhang X,Zhuang G,et al.Speciation of the elements and composition on the surface of dust storm particles—The evidence for the coupling of iron with sulfur in the aerosol during the longrange transport.Chinese Science Bulletin,2005,50(8):738-744.
[48] Faust B C,et al.Sunlight-initiated partial inhibition of the dissolved iron(Ⅲ)-catalyzed oxidation of S(Ⅳ)species by molecular oxygen in aqueous solution.Atmospheric Environment,1994,28:745-749.
[49] Zhuang G,et al.Coupling and feedback between iron and sulphur in air-sea exchange.China Science Bulletin,2003,48(11):1080-1086.
[50] Honjo S,et al.Sedimentation of lithogenic particles in the deep ocean.Mar Geol,1982,50:199-220.
[51] Tsunogai S,et al.Sediment trap experiment in the northern North Pacific:Undulation of settling particles.Geochem J,1982,16:129-147.
[52] Uematsu M,et al.Deposition of atmospheric mineral particles in the North Pacific Ocean.J Atmos Chem,1985,3:123-138.
[53] Betzer P R,et al.A pulse of Asian dust to the central North Pacific:Long range transport of giant mineral aerosol particles.Nature,1988,336:568-570.
[54] Uematsu M,et al.Short-term temporal variability of aeolian particles in surface waters of the northwestern North Pacific.J Geophys Res,1985,90:1167-1172.
[55] Zhang X Y,An Z S,Arimoto R,et al.Dust emission from Chinese desert sources linked to variations in atmospheric circulation.J Geophys Res[Atmos],1997,102(D23):28041-28047.
[56] Zhuang G,et al.The compositions,sources,and size distribution of the dust storm from China in spring of 2000 and its impact on the global environment.China Science Bulletin,2001,46(1):895-901.
[57] 庄国顺,郭敬华,袁蕙,等.2000年中国沙尘暴的组成、来源、粒径分布及其对全球环境的影响.科学通报,2001,46(1):191-197.
【注释】
[1]Nuclepore滤膜又称聚碳酸酯核孔过滤膜,用核孔聚碳酸酯为材料制成、有确定过滤孔径的滤膜,例如在此处的孔径是0.4μm(参见74页脚注*)。
[2]本书以yr表示时间单位“年”,以示对原文献的尊重。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。