首页 理论教育 电磁传感器在智能汽车设计中的应用

电磁传感器在智能汽车设计中的应用

时间:2023-09-21 理论教育 版权反馈
【摘要】:图2.16导线周围的感应电磁场不同的线圈轴线摆放方向,可以感应不同的磁场分量。图2.20感应电动势差值Ed与距离x之间的函数磁感应线圈信号处理电路1)磁感应线圈磁感应线圈可以自行绕制,也可以直接使用10 mH工字电感,实物如图2.21所示。图2.21工字电感这类电感体积小,Q值高,具有开放的磁芯,可以感应周围交变的磁场,如图2.22所示。图2.23信号处理流程2)信号选频放大赛道选择20 kHz的交变磁场作为路径导航信号,在频谱上

电磁传感器在智能汽车设计中的应用

竞赛赛道中心线位置铺设有一条通100 mA交变电流的导线,通过识别导线产生的电磁场可以实现路径检测。测量磁场的方法有很多,下面列出一些常用的方法:

①磁通门法。磁通门法是利用在交变磁场的饱和激励下,处在被测磁场中磁芯的磁感应强度与被测磁场的磁场强度间的非线性关系来测量磁场的一种方法。这种方法主要用于测量恒定的或缓慢变化的弱磁场,在测量电路稍加变化后,也可用于测量低频交变磁场。

②霍尔效应法。霍尔效应是指当外磁场垂直于流过金属或半导体中的电流时,会在金属或半导体中垂直于电流和外磁场的方向产生电动势的现象。霍尔效应法是在实际应用中比较成熟的一种磁场测量方法,利用霍尔效应法可以连续线性地读数,而且可以用于测量小间隙磁场,还可以使用多探头实现自动化测量和数据处理

③磁阻效应法。磁阻效应是指某些金属或半导体的电阻值随外加磁场变化而变化的现象。磁阻效应广泛应用于磁传感、磁力计电子罗盘、位置和角度传感器、车辆探测、仪器仪表、磁存储(磁卡、硬盘)等领域

④磁共振法。磁共振法是利用物质量子状态变化而测量磁场的一种方法,一般可用来测量均匀的恒定磁场。用磁共振原理测量的方法主要有核磁共振、顺磁共振、光泵磁共振等。

⑤超导效应法。超导效应法是利用弱耦合超导体约瑟夫森效应的原理测量磁场的一种方法,它可以测量0.1 T以下的恒定磁场和交变磁场。

⑥磁光效应法。磁光效应法是利用磁场对光和介质的相互作用而产生的磁光效应来测量磁场的一种方法。当偏振光通过磁场作用下的某些各向异性介质时,会造成介质电磁特性的变化,并使光的偏振面(电场振动面)发生旋转,这种现象被称为磁光效应。磁光效应法测量磁场具有耐高压、耐腐蚀、耐绝缘的优点。

以上各种磁场测量方法所依据的原理各不相同,测量的磁场精度和范围相差也很大,对用于智能汽车竞赛的电磁传感器来说,除了考虑检测磁场的精度之外,还需要对检测磁场的传感器的频率响应、尺寸、价格、功耗以及实现的难易程度进行综合考虑。从近14届全国大学生智能汽车竞赛来看,参赛队伍几乎都是采用竞赛组委会推荐的方案,选用最为传统的电磁感应线圈方案,它具有原理简单、价格便宜、体积小、频率响应快、电路实现简单等特点。

(1)检测原理

通电导线周围的磁场是一个矢量场,场的分布如图2.16所示。如果在通电直导线旁边竖直放置两个轴线相互垂直并位于与导线相垂直平面内的线圈,则可以获得感应磁场向量的两个垂直分量,进而可以获得磁场的强度和方向。

导线中的电流按一定规律变化时,导线周围的磁场也将发生变化,则线圈中将感应出一定的电动势。根据法拉第定律,线圈磁场传感器的内部感应电压E与磁场B(t)、电磁线圈的圈数N、截面积A的关系有

感应电动势的方向可以用楞次定律来确定。由于本设计中导线中通过的电流频率较低,为20 kHz,且线圈较小,令线圈中心到导线的距离为,认为小范围内磁场分布是均匀的。再根据如图2.16所示的导线周围磁场分布规律,则线圈中感应电动势可近似为

即线圈中感应电动势的大小正比于电流的变化率,反比于线圈中心到导线的距离。其中常量K为与线圈摆放方法、线圈面积和一些物理常量有关的一个量,具体的感应电动势常量需实际测定来确定。

图2.16 导线周围的感应电磁场

不同的线圈轴线摆放方向,可以感应不同的磁场分量。这里讨论一种最简单的线圈设置方案:双水平线圈检测方案。在车模前上方水平方向固定两个相距L的线圈,两个线圈的轴线为水平,高度为h,如图2.17所示。

图2.17 双水平线圈检测方案

为方便原理分析,在赛道上建立如图2.18所示的坐标系,假设沿着赛道前进的方向为z轴,垂直赛道往上为y轴,在赛道平面内垂直于赛道中心线为x轴。xyz轴满足右手定则。假设在车模前方安装两个水平的线圈,这两个线圈的间隔为L,线圈的高度为h。左边线圈的坐标为(x,h,z),右边的线圈的位置(x-L,h,z)。由于磁场分布是以z轴为中心的同心圆,所以在计算磁场强度时仅仅考虑坐标(x,y)。由于线圈的轴线是水平的,所以感应电动势反映了磁场的水平分量。根据式(2.2)可以知道感应电动势的大小与成正比。

图2.18 感应线圈布置方案

假设h=5 cm,x∈(-15,+15),k=1,计算感应电动势随着线圈水平位置x的变化取值,如图2.19所示。如果只使用一个线圈,感应电动势E是位置x的偶函数,只能够反映水平位置的绝对值|x|的大小,无法分辨左右。为此,需要使用相距长度为L的两个感应线圈,计算两个线圈感应电动势的差值:

图2.19 线圈中感应电动势与它距导线水平位置x的函数

下面假设L=30 cm,K=1,计算两个线圈电动势差值(图2.20)。从图2.20中可以看出,当左边线圈的位置x=15 cm的时候,此时两个线圈的中心恰好处于赛道中央,感应电动势差值Ed为0,当线圈往左偏移,x∈(15,30)时,感应电动势差值小于零,反之,当线圈往右偏移,x∈(0,15)时,感应电动势大于零。因此在位移0~30 cm,电动势差值Ed与位移x是一个单调函数。可以使用这个量对车模转向进行负反馈控制,从而保证两个线圈的中心位置跟踪赛道的中心线。通过改变线圈高度h,线圈之间距离L,可以调整位置检测范围以及感应电动势的大小。

图2.20 感应电动势差值Ed与距离x之间的函数

(2)磁感应线圈信号处理电路

1)磁感应线圈

磁感应线圈可以自行绕制,也可以直接使用10 mH工字电感,实物如图2.21所示。

图2.21 工字电感

这类电感体积小,Q值高,具有开放的磁芯,可以感应周围交变的磁场,如图2.22所示。

使用电感线圈可以对其周围的交变磁场感应出响应感应电动势。这个感应电动势信号具有以下特点:

①信号弱:感应电压只有几十毫伏,在检测幅值之前必须进行有效的放大,放大倍数一般要大于100倍。

②噪声大:一般环境下,周围存在着不同来源、不同变化频率的磁场。

图2.22 工字磁材电感

所以必须对信号进行放大、滤波等处理后再输入单片机进行A/D转换,信号处理流程如图2.23所示。

图2.23 信号处理流程

2)信号选频放大

赛道选择20 kHz的交变磁场作为路径导航信号,在频谱上可以有效地避开周围其他磁场的干扰,因此信号处理的第一级选用选频放大,使得20 kHz的信号能够有效放大,并且去除其他干扰信号的影响。可以使用LC串并联电路来实现选频电路,如图2.24所示。

如图2.24所示电路中,E是感应线圈中的感应电动势,L是感应线圈的电感量,R0是电感的内阻,C是并联谐振电容,电路谐振频率为已知感应电动势的频率f=20 kHz,感应线圈电感为L=10 mH,可以计算出谐振电容的容量为

3)信号二级放大

经过选频放大后的信号幅值较小,随着电感离赛道的距离变化而衰减较快,必须进一步放大后,单片机才能更加准确地采集信号,如果单片机A/D转换的参考电压为3.3 V,一般将电压峰值放大到2 V左右。信号放大最简单的电路就是用三极管进行放大,但是三极管放大电路温度漂移较大,实际应用时稳定性不好,从参赛队伍的技术报告看都是选用运算放大器来实现。

图2.24 RLC并联谐振电路

4)信号检波(www.xing528.com)

经过二级放大后的信号幅值测量有多种方法,可以直接接入单片机的A/D端口,使用单片机直接采样交变电压信号,只要保证单片机的A/D采集速率大于20 kHz的8~10倍。最简单的方法是就是使用二极管检波电路将交变的电压信号检波形成直流信号,然后通过单片机的AD采集获得正比于感应电压幅值的数值。电磁信号放大和检波电路设计在第4章有详细介绍。

(3)电感电容匹配方法

谐振电容理论计算值为6.33×10-9(F),通过查阅电容标准容值表得知,6.2 nF不是标准容值。为了利用标称电容串联或并联,尽可能地构造出6.2 nF的电容,选用的5.6 nF和560 pF的电容并联得到接近于6.2 nF的电容,因电感和电容都存在制造误差,若所选的电容值和电感值不匹配,会导致谐振频率与20 kHz存在较大的差异,则电感和电容构成的谐振电路不满足完全互换性。在匹配过程中,应先测量电感,再进行电容匹配。电感值确定后,计算与之谐振后频率在19.8~20.2 kHz的电容值范围,然后选取并联后电容值在此范围内的电容组。

将焊接完成的谐振电路接入示波器,并利用标准信号源进行测试。如图2.25所示,将谐振的两路输出端接至示波器,将工字电感靠近电磁线,电感尽量保持与电磁线垂直,且距离尽可能小,以便观察输出波形。为了使示波器测量更加精准,调节纵向刻度,使得波形占据屏幕区域2/3以上且不超出屏幕,同时保证屏幕内存在波形2~3个周期的图像。调节后纵向刻度为500 mV/div,横向刻度为10μs/div,输出波形如图2.26所示。

图2.25 谐振电路的测试

图2.26 谐振电路的输出波形

电路输出为标准正弦波,谐振频率为19.992 kHz,误差为0.4‰,输出信号峰峰值为2.32 V。通过改变电感与电磁线的位置,可以改变幅值,当角度不变时,距离越近,幅值越大;当距离不变时,电感与电磁线的夹角越大,幅值越大。实际匹配时,若输出信号峰峰值大于2 V,即可满足使用要求。

(4)电感个数与布局方法分析

电磁循线中最核心的部分是电感的个数与布局,常见电感个数为2~6个,少数组别会采用更多电感。以下仅介绍常见的两电感至六电感循线以及布局分析。

1)两电感循线算法

两电感安装效果如图2.27所示。横电感用于检测赛道磁场信息,计算转向环,要尽量安装于支撑横杆的外侧,但同时要满足比赛规定宽度不超过25 cm的限制。电感安装高度也要注意,太高会造成电感值过小,太低会造成电感值过大,需要根据车模实际运行情况来调整电感高度。电感值越靠近赛道中心线的时候越大,所以可以根据两个电感的值来确定车头当前的位置以及行进的方向,计算出方向环的偏差,两电感循线的偏差计算如式(2.4)所示,Kp是PID控制的比例调节系数。

图2.27 两电感安装示意图

计算方法采用两个横电感的差比和,如果单纯只计算两个横电感的差值,在某些时候会出现车头偏转越多,偏差反而越小的情况。例如,在急弯处,车头会伸出赛道外,所以两个电感的值都会偏小,此时直接作差得到的偏差会很小,不符合实际情况,而差比和的方式可以有效解决这个问题。

图2.28 三电感安装示意图

两电感循线适用于初学者入门,如果参数调校适当,车模运行速度也可以很快,但是对于某些特殊赛道,双电感循线存在一定的缺陷。

2)三电感循线算法

在两个横电感循线的基础上,加入第三个电感,用于识别特殊赛道元素,以及优化行驶路径。电感安装效果如图2.28所示。

左右两侧的横电感安装方式与两电感的安装方式相同,中间位置横电感保证绝对居中,同时要注意中间横电感的放大倍数要比两侧横电感的放大倍数小,因为在赛道某些特殊元素位置,中间电感输出信号比其在普通元素位置大很多,例如在环岛元素的交叉位置,电感输出信号比普通元素位置大三倍以上。三电感循线的偏差计算方法如式(2.5)所示。

在三电感的循线策略中,将中间电感加入差比和的分母中去,可以有效地优化行驶路径。在正常直道时,中间电感的值接近最大值,这样可以计算得到一个较小的偏差,以减少车模的抖动,而在进入弯道时,中间电感的值会迅速减小。不同于两个电感作差比和所计算出的偏差与车头偏离赛道中心线距离的一次线性关系,三电感循线计算方法得到的近似于二次方的关系,可以使车模过弯的时候更好地切内道,从而达到优化行驶路径的效果。同时,中间电感也可以用于判断特殊赛道元素,比如坡道、十字、环岛等。以环岛元素为例,在环岛附近中间电感值会远超在其他赛道元素的值,如图2.29所示(其中的03:0263即为中间横电感的归一化数值)。

图2.29 车模经过环岛元素过程

相比于两个横电感循线,三个横电感能更好地适应多变的赛道元素,获得更佳的行驶效果。当然,除了将中间横电感的归一化数值加在分母上之外,还有其他的处理方式。例如,将其归一化数值当作一个变量型参数,作为除数直接与两个横电感的差比和做商等,如式(2.6)所示。

图2.30 四电感安装示意图

3)四电感循线算法

四电感循线方式与前两种方式不同的地方在于它引入了竖电感安装方式。竖电感主要用于赛道的辅助循线以优化路径、特殊赛道元素的识别以及特殊赛道内的循线(这部分内容在环岛循线中介绍)。四个电感主要包括两个横电感与两个竖电感,具体安装方式如图2.30所示。

在四个电感的安装中,横电感安装位置及方式同两电感的安装方式,竖电感也要尽量靠近外侧,以获得更多的赛道有效信息。但要注意,横电感与竖电感距离过近时会发生谐振现象,直道上竖电感与通电导线平行,理论上竖电感是没有值的,但如果发生谐振现象,竖电感也会有较大的值,会严重影响正常的偏差计算。四电感循线的偏差计算方式见式(2.7)。

四电感循线在横电感循线的基础上加上了竖电感的差比和的值。因为竖电感在直道上基本没有值,但是在接近弯道时,会与通电导线形成夹角,竖电感的值会迅速增大,即竖电感对于弯道的灵敏度会远大于横电感,可以使车模过弯时更好地切内道。需要注意的是,要提前限定电感归一化数值乘以100之后的值不能小于1,因为这个值是一个int型的整型变量,如果采到的值都很小,尤其是在直道上的竖电感的值,若不加限制会出现0/0的情况,造成程序BUG,出现不可预料的后果。同时,竖电感也可以用于特殊赛道的循线,例如环岛循线就主要依靠竖电感来进行。

4)五电感循线算法

五电感的循线方式是利用三个横电感和两个竖电感来计算方向环的偏差。相当于融合了三电感循线和四电感循线的优点,这也增大了参数调试方面的难度。具体的电感安装方式如图2.31所示。

五电感的循线思路在于用中间横电感加上两个竖电感来辅助循线,优化路径。具体的方向环偏差计算方法如式(2.8)所示。

图2.31 五电感安装示意图

利用五电感循线可以更加稳定的识别赛道元素,如坡道、环岛、十字路口等,可以更及时地作出相应处理,从而提升速度。

5)六电感循线算法

六电感循线是利用两个对称放置的横电感来代替中间的横电感,用以辅助循线和识别特殊赛道元素。六电感的具体安装方式如图2.32所示。

利用中间两个横电感辅助循线,可以使普通赛道元素不再单纯依靠左右两侧的横电感,具体的方向环偏差计算如式(2.9)所示。

图2.32 六电感安装示意图

以上介绍了五种常见的循线策略,需要注意的是,电感数量越多,获得的赛道信息越多,从而增加结果的可靠性。但是,过多的数据也会增加处理难度,同时电感数量增加会造成安装位置过近,导致互相谐振,影响数据准确性。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈