1.相对性原理
1865年物理学家麦克斯韦建立了描述电磁运动普遍规律的麦克斯韦方程组,从这组方程出发,预言了电磁波的存在。1888年,赫兹实验证实了电磁波的存在,原来电磁波就是以波动形式传播的电磁场。如果将真空中电磁波的波动方程与机械波的波动方程相比较(参见相关章节),就会发现电磁波的波速等于光速,于是断定光就是有特定波长范围的电磁波。由此,麦克斯韦提出了光的电磁学说,无数事实证明了该经典理论的正确性。但研究者在考察这一理论的基础时碰到了一些困难。当时,这些困难集中在经典电磁学的以太假说。迈克耳孙-莫雷实验和其他一些实验,否定了经典电磁理论的以太假说,他们通过精密实验未观察到地球相对于“以太”的运动。由此得出最终结论:作为绝对参考系的以太不存在。对电磁现象的研究表明:电磁现象所遵从的麦克斯韦方程组不服从伽利略变换。
种种研究表明,必须修改经典物理赖以生存的结论。爱因斯坦认为相对性原理具有普适性,对经典力学、对麦克斯韦电磁学都是如此。于是,1905年爱因斯坦提出相对性原理:一切物理定律在所有惯性系中表现形式相同。换言之,那个绝对静止的参考系不存在。
2.光速不变原理
按伽利略变换,电磁波沿各方向传播的速度并不等于恒量。爱因斯坦发现了这个结论的问题,提出另一个意义深远的原理,就是光速不变原理:在所有惯性系中测量到的真空中的光速沿各方向传播的速度都等于恒量c(国际公认值c=2.997 9×108m·s-1),与光源的运动状态无关。显然,光速不变原理与经典力学中的速度叠加相矛盾。
3.洛伦兹变换
上述两条基本原理是整个狭义相对论的基础,它的提出与伽利略变换是相矛盾的,但是它解决了当时经典理论的困惑。应该说是经典理论出了问题,伽利略变换具有局限性。早在爱因斯坦建立狭义相对论之前,洛伦兹在研究电磁场理论、为了解释迈克耳孙-莫雷实验时就提出了一个变换式,称为洛伦兹变换。爱因斯坦发现洛伦兹变换与狭义相对论的两条基本原理相融,于是将洛伦兹变换作为相对论两条基本原理的数学表达式,还称为洛伦兹变换。
设S系和S′系是两个相对作匀速直线运动的惯性参考系(见图14-1),我们总可以适当地选取坐标轴、坐标原点和计时零点,使S系与S′系的关系满足以下规定:设S′系沿S系的x轴正向以速度v相对S系作匀速直线运动;使x、y、z轴分别与x′、y′、z′轴平行和使S系的原点O与S′系的原点O′重合,让两惯性系在原点处的时钟都指示零点。洛伦兹求出同一物理事件P的两组坐标(x,y,z,t)和(x′,y′,z′,t′)之间的关系如下。
1)洛伦兹坐标变换式
洛伦兹坐标变换式为
其中(www.xing528.com)
相对论的物理定律的数学表达式在洛伦兹变换下保持不变。
注意,当v≪c时,洛伦兹变换式(14-5)转为伽利略变换,说明伽利略变换只适用于低速运动的物体。
还值得注意的是,在洛伦兹变换中,时间t′依赖于空间坐标x。还有一个洛伦兹逆变换(书中未列出)也说明时间t依赖于坐标x′,这也与伽利略变换迥然不同。在相对论看来,时间与空间是相互影响的。
2)洛伦兹速度变换式
正变换(c是光速):
如果在S系中沿x方向发射一光信号,光速是c,则在S′系中观察其光速是多少呢?
运用洛伦兹速度变换式(14-6)可知
即光速不变。
其结果正是光速不变原理的解释。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。