首页 理论教育 大直径盾构隧道圆形风井施工技术研究及应用

大直径盾构隧道圆形风井施工技术研究及应用

时间:2023-08-20 理论教育 版权反馈
【摘要】:根据王曙光、蒋红星、叶琳昌等的统计数据显示,与地下水有关的基坑事故约占总事故的45%~70%。从近年来上海、南京、广州地区地铁车站深基坑施工的实际情况来看,多数深基坑工程事故与承压水处理不当有关,承压含水层(地下水)已成为导致深基坑工程事故的关键因素之一。例如,上海轨道交通4号线越江隧道区间因冷冻设备出现故障造成承压水涌入隧道造成直接经济损失1.5亿元,南京地铁2号线元通站因承压水处理不当导致基坑涌水事故等。

大直径盾构隧道圆形风井施工技术研究及应用

地下水是深基坑工程研究的核心问题之一,尤其是在沿江沿海软土地区,地下水多与江海水存在水力联系,地下水是基坑工程失稳破坏的关键因素,也是导致基坑工程事故最直接的原因之一。根据王曙光、蒋红星、叶琳昌等的统计数据显示,与地下水有关的基坑事故约占总事故的45%~70%。

目前的研究及工程实践也表明,承压含水层(地下水)对深基坑工程的施工安全性具有重要的影响。从近年来上海、南京、广州地区地铁车站深基坑施工的实际情况来看,多数深基坑工程事故与承压水处理不当有关,承压含水层(地下水)已成为导致深基坑工程事故的关键因素之一。例如,上海轨道交通4号线越江隧道区间因冷冻设备出现故障造成承压水涌入隧道造成直接经济损失1.5亿元,南京地铁2号线元通站因承压水处理不当导致基坑涌水事故等。

近年来,随着过江隧道、海底隧道、城市地铁工程等重大基础设施工程建设的快速发展,一些专家学者对承压水问题进行了相关的研究,并逐渐从理论研究转向工程应用。经过多年的研究与工程实践,在深基坑工程承压水的渗流理论、控制技术与降水施工方面的研究都有了一定的进展,人们逐渐认识到了承压水的特点,并逐渐重视承压水的影响,但在承压水的渗流(稳态与非稳态)机理、出险机理及对周围环境的影响等方面对承压水的认识仍处于较为肤浅的阶段,对承压水的认识与控制缺乏有效的方法与措施,导致目前地铁深基坑工程因承压水处理不当引起的工程事故仍然频频发生。因此,在超深圆形基坑工程施工中,深入了解承压水的特征和建立完善的承压水控制策略,已成为亟待解决的重要课题。(www.xing528.com)

梅子洲风井毗邻长江,风井以西距长江梅子洲防洪子堤仅20m左右,场地分布有④层粉细砂和⑥层卵砾石承压水,且设计地连墙墙底标高-54.452,进入卵砾石层约8~9m,未形成有效隔断帷幕,场地承压水与长江水互为补排关系,若仅采用降水方案,在降深很小时,影响半径可能已经超过防洪堤堤身范围,如何保证在降水开挖过程中不产生较大墙体位移、流砂、流土现象,底板不发生突涌,对施工中的降水方案及运行提出了更高的要求。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈