随着动力电池比能量越来越高,在电池组大倍率放电的情况下,电池组冷却需要的空气流速也越大,在产生巨大噪声的同时,风扇的功率要求也大大增加,逐步开始不满足电动汽车的需求,同时高温环境下空气冷却的效果也并不理想,所以空气对流换热技术已逐步不满足需求。当流体流经固体表面时,在固体表面附近,越接近固体表面,流体的流动速度越低,当与固体接触的距离非常小时,流体处于停滞状态,可以看成是流体与固体之间只有热传导存在。以水为例,已知常温下水的导热系数是空气的几十倍,而且水的比热容是空气的4倍,所以研究者通常认为液体流动换热比空气换热有更好的效果,更能满足动力电池的温控需求。
液体流动换热是使用导热系数比较高的液体直接或间接接触电池以带走热量的热管理形式。在结构设计方案中,既可以将电池直接放置于绝缘且导热系数高的液体中,也可以通过冷板等与电池接触,先将热量从电池组传入冷板,再通过冷板与液体间的换热将热量带出电池包。前者多采用硅基油、矿物油等有机油类,往往黏度很大,流动性弱;后者选用的介质为水、乙二醇、乙二醇与水的混合物等,流动性强,换热系数高,但是因为其不绝缘,必须做好管道密封,防止泄漏造成短路。
液冷模式即电池采用水冷方式换热,如图1.8所示。一般会增加一个换热器与制冷循环耦合起来,通过制冷剂将电池的热量带走。整个系统主要包括电子水泵、换热器、电池散热板、PTC加热器、膨胀水箱。电池需要冷却时,电池通过散热板与冷却液进行换热,加热后的冷却液被电子水泵送入换热器内,在换热器内部一侧通入制冷剂,一侧通入冷却液,两者在换热器内充分换热,热量被制冷剂带走,冷却液流出换热器再流入电池,形成一个循环。电池需要加热时,关闭制冷回路,开启PTC加热器,冷却液被加热后送入电池内部,通过散热板加热电池。可以通过控制制冷回路通断以及控制PTC加热功率,来控制冷却液的温度,从而控制电池内部温度。此种方案系统比较复杂,成本比较高。液冷是目前许多电动乘用车的优选方案,国内外的典型产品如宝马i3、特斯拉、通用沃蓝达(Volt)、华晨宝马之诺、吉利帝豪EV。(www.xing528.com)
图1.8 液冷式散热结构图
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。