首页 理论教育 直梁弯曲强度条件校核的结果

直梁弯曲强度条件校核的结果

时间:2023-08-19 理论教育 版权反馈
【摘要】:杆轴线由直线变成曲线,这种变形称为弯曲变形。梁为圆截面,其直径d=40 mm,求梁横截面上的最大正应力。

直梁弯曲强度条件校核的结果

1.求最大弯矩

如图3-2-30的单梁桥式吊车可以简化为受集中力(Q+G)的简支梁,由上述内容可知,其最大弯矩在梁的中点,且

2.进行强度校核

由强度条件

由已知条件可知梁的抗弯截面模量Wz=1 430 cm3

所以

所以该梁强度符合要求。

(1)杆轴线由直线变成曲线,这种变形称为弯曲变形。

(2)梁的类型:简支梁、外伸梁、悬臂梁。

(3)弯矩:力偶矩M称为弯矩,M(x)=-Fl。

(4)弯曲强度校核:

一、填空题

(1)构件的承载能力主要由________、________、和________3个因素来衡量。

(2)轴向拉伸或者压缩杆件,其受力特点是:________________________;其变形特点是____________________。

(3)构件在外力作用下,________称为应力;如果拉(压)杆的应力垂直横截面,则该应力称为________;应力的国际单位为________。

(4)构件受剪切作用是的受力特点是:____________________。

(5)挤压作用是指______________的现象,而______________面就叫作挤压面,用符号________表示。

(6)长度和截面面积相同的两杆,一是钢杆,一是铜杆,若受同样大小的拉力的作用,则两杆的内力________,应力________,变形________,许用应力________。

二、选择题

(1)在校核材料的剪切和挤压强度时,当其中有一个超过许用值时,强度________。

A.不够 B.足够 C.无法判断

(2)圆轴扭转时,横截面上________。

A.有正应力,其大小与截面直径无关

B.有正应力也有剪应力,它们的大小均与截面直径无关

C.只有剪应力,其大小与到圆心的距离成正比

三、计算题

(1)试用截面法求3-2-35中各杆指定截面的轴力,并作出轴力图。

图3-2-35 画杆的轴力图

(2)试求图3-2-36中各轴在指定横截面1-1、2-2和3-3上扭矩。

图3-2-36 圆轴的扭矩

(3)试绘出图3-2-37中各轴的扭矩图。

(www.xing528.com)

图3-2-37 作轴的扭矩图

(4)如图3-2-38所示,传动轴转速n=250 r/min,轮B输入功率PB=7 kW,轮A、C、D输出功率为PA=3 kW,PC=2.5 kW,PD=1.5 kW,PB=7 kW,试绘该轴的转矩图。

图3-2-38 传动轴

(5)如图3-2-39所示,试计算下列各梁指定横截面的剪力和弯矩。

图3-2-39 求梁的剪力和弯矩

(6)如图3-2-40所示,试作出下列各梁的弯矩图,并求出|M|max

图3-2-40 画梁的弯矩图

(7)如图3-2-41所示,试作出下列各梁的弯矩图,求出其|M|max,并加以比较说明。

图3-2-41 画梁的弯矩图

(8)三种材料的σ-ε曲线如图3-2-42所示,试指出这三种材料的机械性能特点。

(9)判断图3-2-43所示的横截面上的切应力分布图是否正确。

图3-2-42 σ-ε曲线

图3-2-43 切应力分布图

(10)简述弯曲正应力公式中各符号的含义,σ的正负号的确定及公式应用的范围。

(11)试比较圆形、矩形和工字形截面梁的合理性。

(12)求图示3-2-44阶梯杆横截面1-1,2-2,3-3上的轴力,并作轴力图。若横截面面积A1=200 mm2,A2=300 mm2,A3=400 mm2,求各横截面上的应力。

(13)图示3-2-45为由两种材料组成的圆杆,直径d=40 mm,杆的总伸长Δl=0.126 mm。试求载荷F及杆内的最大正应力。

图3-2-44 阶梯轴横截面

图3-2-45 两种材料组成的圆杆

(14)一传动轴如图3-2-46所示,已知MeA=1.3 N·m、MeB=3 N·m、MeC=1 N·m、MeD=0.7 N·m;各段轴的直径分别为:DAB=50 mm、DBC=75 mm、DCD=50 mm。试绘转矩图并求1-1、2-2、3-3截面上的最大切应力。

(15)如图3-2-47所示,铆接钢板厚t=10 mm,铆钉直径d=17 mm,铆钉的许用切应力[τ]=140 MPa,许用挤压应力[σbs]=320 MPa,载荷F=24 kN,试对铆钉强度进行校核。

图3-2-46 传动轴

图3-2-47 铆钉连接

16.悬臂梁受力及截面尺寸如图3-2-48所示。设q=60 kN/m,F=100 kN。试求

(1)梁1-1截面上A、B两点的正应力;

(2)整个梁横截面上的最大正应力。

17.简支梁受力如图3-2-48所示。梁为圆截面,其直径d=40 mm,求梁横截面上的最大正应力。

图3-2-48 简支梁的受力

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈