人们常说,科学家是蹩脚的哲学家,这句话肯定不是没有道理的。那么,物理学家是不是干脆把哲学思考留给哲学家就好了?当物理学家相信他可以自行支配一套无可置疑的严格的基本定律和基本概念时,这样说也许是对的,但是像现在这样,物理学本身的基础已经问题重重,经验迫使我们去寻求更新、更可靠的基础,此时物理学家就不能将认真考察理论基础的任务拱手让给哲学家了,因为穿鞋的人自己最清楚哪里不合脚。在寻找新的基础时,物理学家必须尽力弄清楚,他使用的概念有多少根据和有多大的必要性。
整个科学不过是对日常思维的一种改进。正因如此,物理学家的批判性思考就不能只限于考察他自己特殊领域的概念。他必须认真思考一个困难得多的问题,即分析日常思维的本性。
我们的心理经验包括感觉经验、对它们的记忆、意象和感情等一连串事物。与心理学不同,物理学只直接处理感觉经验以及对其关联的“理解”。但即使是日常思维中的“实际外在世界”概念,也完全基于感觉印象。
首先要指出,感觉印象和意象是无法区分的,或者说,至少不可能绝对确定地区分。这个问题也涉及实在概念,这里我们不去讨论,而会把感觉经验的存在当作既定的,也就是说,把它当作一种特殊的心理经验。
我认为,建立“实际外在世界”的第一步就是形成物体和各种物体的概念。我们从诸多感觉经验当中任意取出某些反复出现的感觉印象的复合体(部分是与被解释为别人感觉经验之标记的感觉印象结合在一起),并把“物体”概念与之相关联。从逻辑上讲,这个概念并不等同于上述感觉印象的总和,但却是人类(或动物)心灵的自由创造。另一方面,这个概念的意义和根据则要完全归于与之相关联的感觉印象的总和。
第二步可见于这样一个事实:我们在思维中(它决定着我们的期望)赋予物体概念以一种意义,它在很大程度上独立于那些起初产生它的感觉印象。这就是我们把“实际存在性”赋予物体时所指的意思。这样一种处置的理由完全在于,凭借这些概念及其之间的心理关系,我们得以在感觉印象的迷宫中找到方向。这些概念和关系虽然都是心灵的自由创造,但对我们来说,却比个体感觉经验本身更强大、更不可改变,个体感觉经验永远都有可能是幻觉或错觉的产物。另一方面,这些概念和关系,以及假定实际物体和“实际世界”的存在性,其根据仅仅在于与感觉印象相关联,而它们则构成了感觉印象之间的心灵联系。
我们永远也无法理解的一个令人惊叹的事实是:借助于思维(运用概念,创造并使用概念之间明确的函数关系,并把感觉经验与概念对应起来),我们所有的感觉经验就能得到整理。可以说,“世界的永恒秘密就在于世界的可理解性”。如果没有这种可理解性,假定有一个实际的外在世界就是毫无意义的,这正是康德的伟大认识之一。
这里所说的“可理解性”是在最谦虚的意义上用的,其含义是:在感觉印象之间产生某种秩序,这种秩序是通过创造一般概念、这些概念之间的关系,以及概念与感觉经验之间的某种确定关系而产生的。正是在这个意义上,我们的感觉经验世界才是可理解的。它是可理解的,这是一个奇迹。
在我看来,概念的形成和关联方式,以及如何将概念与感觉经验对应起来,都不是先验的。在引导我们创造这种感觉经验的秩序时,全看理论是否成功。我们只需定下一套规则,倘若没有这样的规则,就不可能获得想要的知识。这些规则与游戏规则类似,虽然游戏规则本身是任意的,但正是其严格性才使游戏成为可能。然而,对规则的固定永远也不会是最终的,它只有对于一个特殊的应用领域才能有效(也就是不存在康德意义上的终极范畴)。
日常思维的基本概念与感觉经验复合体之间的关联只通过直觉来把握,而不能由科学逻辑来规定。正是这些关联(所有关联都不能用概念术语来表达)将科学大厦与空洞的逻辑概念框架区分开来。借助于这些关联,科学的纯粹概念命题就成了描述感觉经验复合体的一般陈述。
我们将那些与典型的感觉经验复合体直接直觉地联系在一起的概念称为“原始概念”。从物理的观点看,所有其他概念只有通过命题与原始观念联系在一起时才有意义。这些命题,部分是对概念的定义(以及按照逻辑由定义推出的陈述),部分是无法由定义导出的命题,后者至少表达了“原始概念”之间的间接关系,这样一来也表达了感觉经验之间的间接关系。后一种命题乃是“关于实在的陈述”或自然定律,当它们被用于原始概念所涵盖的感觉经验时,必须显示出有效性。至于哪些命题应被看作定义,哪些应被看作自然定律,则主要取决于所选择的表示法。只有从物理学的观点来考察整个概念系统在多大程度上并非空洞时,做这种区分才变得绝对必要。
科学的目标一方面是尽可能完整地理解所有感觉经验之间的关联,另一方面则是用最少的原始概念和关系来达到这个目标。(尽可能地寻求世界图像中的逻辑统一性,即逻辑要素最少。)
科学使用所有原始概念(即与感觉经验直接关联的那些概念)以及将它们联系起来的命题。在第一个发展阶段,科学并不包含任何别的东西。对我们的日常思维来说,这种水平大体上已经足够。但这种情况无法满足真正有科学头脑的人,因为这样得到的所有概念和关系完全缺乏逻辑统一性。为了弥补这一缺陷,人们发明了一个概念和关系较少的体系,该体系保留着“第一层”的原始概念和关系,作为可由逻辑导出的概念和关系。这个新的“第二层体系”因为有基本概念(第二层的概念)而具有更高的逻辑统一性,但不再与感觉经验复合体有直接关联。如果进一步追求逻辑统一性,就会得到第三层体系,为了导出第二层(以及间接导出第一层)概念和关系,该体系的概念和关系数目就更少。如此继续下去,直到我们得到这样一个体系,它拥有可能设想的最大统一性和最少的逻辑基础概念,但仍然与我们的感觉经验相容。我们不知道,这种志向最终能否让我们得到一个明确的体系。科学家的回答往往是否定的。不过,在与这些问题角力时,他们决不轻言放弃希望,相信这个最高目标在很大程度上的确能够实现。
抽象理论或归纳理论的拥护者也许会把各个层次称为“不同程度的抽象”,但我并不认为掩盖概念对于感觉经验的逻辑独立性是合理的。这种关系并不像汤与肉的关系,而是像点寄存牌上的数字与大衣的关系。
而且,层与层之间也没有清楚地分开,甚至哪些概念属于第一层也不是绝对清楚的。事实上,我们处理的是自由形成的概念,这些概念与感觉经验复合体有直觉上的联系,对于实际应用有足够的确定性,以至于在任何既定的经验情况下,结果的有效性都是确定的。关键在于,要把许多与经验接近的概念和命题表示成由尽可能窄的基础通过逻辑推导出来的命题,而构成此基础的正是自由选择的基本概念和基本关系(公理)。但这种选择的自由很特别,它完全不同于小说家的自由,倒更像是猜一个设计巧妙的字谜时的自由。猜谜者固然可以尝试任何字作为谜底,但只有一个字才能真正解开整个字谜。相信我们的五种感官所知觉的大自然具有这样一种巧妙字谜的特征,这是信念问题。不过,迄今为止科学取得的成功的确给了这种信念以某种激励。
前面所讲的几个层次对应于科学发展过程中寻求统一性的几个阶段。就终极目标而言,中间层次仅仅是暂时的,它们最终会消失。然而在我们今天的科学中,这些层次代表着问题的部分成功,它们既相互支持,又相互威胁,因为今天的概念体系包含着根深蒂固的不协调,这一点我们后面会讲到。
接下来的内容旨在表明,为了达到逻辑上尽可能一致的物理学基础,构造性的人类心灵走上了哪些道路。
我们的感觉经验,以及更一般地,我们的一切经验都有一个重要性质,那就是都有时间秩序。这种秩序引出了主观时间的心理概念,对我们的经验加以整理。然后,主观时间又经由物体和空间的概念引出了客观时间概念。我们后面会讨论这些内容。
然而在客观时间概念之前,必须先有空间概念;而在空间概念之前,又要先有物体概念。物体概念直接与感觉经验复合体相关联。我们已经说过,“物体”概念的典型特征是这样一种性质,它使我们将一种既不依赖于(主观)时间,也不依赖于是否被我们的感官知觉到的存在性赋予物体,尽管我们觉察到它会随时间变化。彭加勒曾经正确地强调,可以区分物体的“状态变化”和“位置变化”,位置变化可以通过我们身体的主动运动而反过来。
有这样一些物体,在某种知觉范围内,我们不能把状态变化而只能把位置变化归于它们。这个事实对于空间概念的形成(甚至对于物体概念本身的根据)至关重要。我们称这种物体为“准刚性的”。
如果把两个准刚性的物体当作我们的知觉对象一同(也就是当成一个单元)考虑,那么这个整体就有一些改变是不可能被看成整体位置的变化的,尽管这两个组分中的每一个都发生了位置变化。这就引出了两个物体“相对位置的变化”这个概念,由此也引出了两个物体的“相对位置”概念。我们还发现,在不同的相对位置当中有一种特殊的相对位置,我们称之为“接触”。[130]两个物体在三个或三个以上的“点”上永久接触,就意味着它们结合成了一个准刚性的复合体。可以说,第二个物体由此形成了第一个物体的(准刚性)延展,而第二个物体又可以继续做准刚性的延展。物体的准刚性延展可以无限继续下去。物体B₀的所有这种可以设想的准刚性延展的全体,就是该物体所决定的无限“空间”。
在我看来,处于任意状况的每一个物体都能与某个给定的物体B₀(参照体)的准刚性延展相接触,这个事实就是我们空间概念的经验基础。在前科学思维中,坚固的地壳起着B₀及其延展的作用。“几何学”(geometry)[131]这个名称就暗示,空间概念与作为始终存在的参照体的地球有着心理上的联系。
“空间”这个大胆的概念先于一切科学上的几何学,它把我们关于物体位置关系的心理概念转变为这些物体在“空间”中的位置的观念。这个概念本身代表着形式上的极大简化。通过这个空间概念还可以得到一种态度:任何对位置的描述都隐含地是一种对接触的描述。说物体的一个点位于空间的P点,意思是该物体在P点与标准参照体B₀(假定做了适当延展)的P点相接触。
在希腊人的几何学中,空间只扮演定性的角色,因为物体相对于空间的位置虽然被视为既定的,但并不是用数来描述的。笛卡尔最早引入了这种方法。用他的话说,欧几里得几何学的全部内容都可以公理化地建立在以下陈述的基础上:(1)刚体上两个定点确定一个截段。(2)可以把三个数X₁,X₂,X₃与空间的点联系起来,对于所考察的任何一个截段P'–P'',其端点的坐标X₁'、X₂'、X₃',X₁''、X₂''、X₃'',表达式为:
与该物体的位置无关,也与任何其他物体的位置无关。
(正)数s被称为截段的长度,或者空间的两点P'和P''(这两点与截段的点P'和P''重合)之间的距离。
我们有意选择这样的表述,使它不仅清楚地表达了欧几里得几何学的逻辑和公理的内容,而且也表达了经验内容。对欧几里得几何学的纯逻辑的(公理的)表示固然更为简单清晰,但也因此而失去了概念构造与感觉经验之间的联系,而几何学对于物理学的意义完全建立在这种联系之上。认为先于一切经验的逻辑必然性是欧几里得几何学以及属于它的空间概念的基础,这是一个致命的错误,它源于欧几里得几何学的公理构造的经验基础已经遭到遗忘。
只要能说自然中存在着刚体,欧几里得几何学就是一门必须由感觉经验来证实的物理科学。它关系到一些对于刚体之间的相对位置必定永远成立的定律的全体。可以看到,物理学中原先使用的那种物理的空间概念也与刚体的存在密切相关。
从物理学家的观点来看,欧几里得几何学的核心要点在于,其定律与物体的特定性质无关,它所讨论的是物体的相对位置。其形式上的简单性由同质性和各向同性(以及诸如此类的事物的存在)来刻画。
空间概念固然有用,但对于几何学本身,即对于表述刚体之间相对位置的规则,却并非不可或缺。而客观时间的概念却是与空间连续体的概念联系在一起的,没有客观时间的概念,就不可能表述经典力学的基础。
客观时间的引入涉及两个彼此独立的假设:
1.将经验的时间序列与“时钟”(即周期性重现的封闭系统)的读数联系起来,引入客观的当地时间。
2.对于整个空间中的各个事件引入客观时间概念,只要通过这个概念,就可以把当地时间的概念扩展成物理学中的时间概念。
先来讨论1。在我看来,它并不意味着一种“乞题”[132],只要在澄清时间概念的起源和经验内容时,把周期性重现这个概念放在时间概念之前就可以了。这种观念恰恰对应于刚性(或准刚性)物体的概念在空间概念解释中的优先地位。
再来讨论2。相对论问世之前流行着一种错觉,认为从经验的观点看,空间上分离的事件的同时性的意义,从而物理时间的意义,都是先验自明的。这种错觉来源于在日常经验中可以忽略光的传播时间。因此,我们习惯于不去区分“同时看见”和“同时发生”,结果导致时间与当地时间之间的差别被模糊了。
从经验意义的观点来看,这种明确性的缺乏是与经典力学的时间观分不开的。以公理化的方式来表示与感觉经验无关的空间和时间,掩盖了这种不明确性。独立于概念赖以存在的经验基础来使用概念并不必然会损害科学。但这很容易使人错误地相信,这些被遗忘了来源的概念在逻辑上是必然的,因此是不可变动的。这种错误可能会严重威胁科学的进步。
以前的哲学家始终没有看到,客观时间概念就其经验解释而言是缺乏明确性的。这对于力学的发展,因此对于一般物理学的发展是幸运的。他们完全相信空间–时间构造的实在意义,并且发展了力学的基础,这些基础可以扼要地表示如下:
(a)质点概念:可以足够准确地将物体——就其位置和运动而言——描述成一个点,其坐标为X₁,X₂,X₃,它(相对于“空间”B₀)的运动由作为时间函数的X₁,X₂,X₃来描述。
(b)惯性定律:一个质点距离所有其他质点足够远时,其加速度的各个分量就消失了。
(c)(质点的)运动定律:力=质量×加速度。
(d)力(质点之间的相互作用)的定律。
这里,(b)仅仅是(c)的一个重要特例。只有给出了力的定律,实际的理论才能存在。为了让一个通过力彼此关联的质点系可以像一个质点那样行为,这些力必须首先只服从作用与反作用相等的定律。
这些基本定律和牛顿的引力定律共同构成了天体力学的基础。在牛顿力学中,空间B₀并不像上文所述是由刚体的延展所导出,而是包含着新的想法。对于给定的力的定律,(b)和(c)并非对于任何B₀都有效,而是只对一种具有特定运动状态的B₀(惯性系)才有效。坐标空间由此获得了一种独立的物理性质,这种性质并不包含在纯粹几何的空间概念中,这又让牛顿有了全新的想法(旋转水桶实验)。[133]
经典力学仅仅是一般性的方案,只有明确给出力的定律(d)才能成为一种理论,就像牛顿在天体力学方面非常成功地做到的那样。科学家总是希望使基础达到最大的逻辑简单性,从这个目标来看,这种理论方法是有缺陷的,因为力的定律无法逻辑地推导出来,对力的定律的选择是先验的,在很大程度上甚至是任意的。牛顿的引力定律与其他可设想的力的定律的唯一区别就在于它的成功。
虽然我们今天知道,经典力学无法充当整个物理学的基础,但它在我们的物理思考中仍然占据着核心地位。这是因为,无论自牛顿时代以来取得了什么重大进展,我们仍然没有找到物理学的最终基础,由它可以逻辑地推导出所有已知现象,以及成功的部分理论体系。接下来我想简要描述一下事情是怎样的。
首先我们要厘清,经典力学体系在多大程度上能够充当整个物理学的基础。由于这里只讨论物理学的基础和发展,我们无须关注力学在纯形式方面的进展(拉格朗日方程、正则方程等)。但有一点似乎是不可或缺的。“质点”这个概念对于力学是非常基本的。对于不能当作质点来处理的物体(严格说来,任何“可以用感官感知的”对象都属于这个范畴),应当如何提出一种力学呢?我们如何设想物体由质点构成以及质点之间的作用力呢?要使力学完备地描述物体,提出这个问题就是不可避免的。
在力学中,我们常常假定质点以及在质点之间起作用的力的定律是不变的,因为它们随时间的变化无法做力学解释。由此可以看出,经典力学必定会引入物质由原子构成这一观念。我们现在特别清楚地意识到,相信理论是从经验中归纳出来的,这是多么错误的想法。甚至连伟大的牛顿也未能摆脱这种错误(“我不杜撰假说”)。
为了避免无望地专注于这种思路(原子论),科学首先以如下的方式发展。如果一个系统的势能是其位形的函数,则该系统的力学就确定了。现在,如果作用力可以保证系统位形的某些结构性质得以维持,那么这种位形就可以用少数几个位形变量qr来足够准确地描述。在这种情况下,势能被认为只同这些变量有关(比如用六个变量来描述准刚体的位形)。
力学应用的另一种方法同样不把物质再分为“实在的”质点,那就是所谓的连续介质力学。这种力学的典型特征是,假想物质的密度和速度都连续地依赖于坐标和时间,而没有明确给出的那部分相互作用可以被视为表面力(压力),后者亦为位置的连续函数。流体动力学理论和固体弹性理论就是这样。这些理论避免直接引入质点,而是代之以从经典力学的基础来看只可能有近似意义的虚构。
除了有应用方面的伟大意义之外,这些科学范畴还提出了新的数学概念,创造出偏微分方程,这种形式工具对于日后寻求整个物理学的新基础是必不可少的。
力学应用的这两种方式都属于所谓“唯象的”物理学。这种物理学的典型特征是尽量使用与经验接近的概念,但也不得不因此而牺牲基础的统一性。热、电和光都要用不同的状态变量和物质常数来描述,而不能用力学量。至于这些变量的相互关系和时间关系,则主要只能由经验来确定。麦克斯韦的许多同时代人都把这种表述方式看成物理学的终极目标,并认为物理学应当使用与经验接近的概念,再从经验中归纳出定律。从知识论的观点来看,密尔和马赫的立场大体如此。
在我看来,牛顿力学最伟大的成就在于,其一致的应用已经超越了这种唯象的观点,特别是在热现象方面。气体运动论和一般的统计力学都很成功。气体运动论将理想气体的状态方程、黏性、扩散、热传导和辐射度观象从逻辑上联系起来,而从直接经验的观点来看,这些现象似乎毫不相干。统计力学则对热力学的观念和定律给出了力学解释,由此发现了经典热理论的概念和定律的适用范围。这种运动论不仅在基础的逻辑统一性上远远超出了唯象的物理学,而且还得出了原子和分子的明确大小。这些数值是由几种独立的方法分别得到的,因此是无可怀疑的。这些重大成就所付出的代价是把原子与质点对应起来,而这些东西显然具有高度的臆测性。没有人会指望“直接感知”原子。那些与实验事实有更直接关系的变量(如温度、压力、速率)的各种定律,都是通过复杂的计算从这些基本观念中推导出来的。这样一来,原先更多是唯象地构造的物理学(至少是其中一部分),通过基于原子和分子的牛顿力学,都被归结到虽然远离直接实验但性质上更加一致的基础上。
在解释光和电的现象时,牛顿力学远不如在上述领域那样成功。诚然,牛顿试图在其光的微粒说中把光归结为质点的运动。但是后来,随着光的偏振、衍射和干涉等现象的发现,微粒说不得不做出越来越多不自然的修改,惠更斯的光的波动说渐渐占了上风。当时晶体光学和声学已经发展到一定程度,光的波动说可能本质上起源于此。应当承认,惠更斯的理论起初也是基于经典力学,无处不在的以太被视为波的载体,但任何已知现象都无法暗示以太是如何由质点构成的。支配以太的内力,以及以太与“有重”物质之间的作用力,始终没有得到清晰认识。因此,这种理论的基础一直模糊不清。它所依据的偏微分方程,似乎无法归结为力学要素。
在电磁现象方面,人们再次引入了一种特殊的物质,并且假定这些物质之间存在着一种类似于牛顿引力的超距作用力。但这种特殊的物质似乎缺乏惯性这种基本性质,而且与有重物质之间的作用力仍然模糊不清。除了这些困难,这些物质的极性特征也无法纳入经典力学的框架。电动力学现象发现之后,磁现象可以用电动力学现象来解释,于是不再需要假设磁性物质。但该理论的基础变得更不能让人满意,因为现在,运动的带电物质之间被认为存在着非常复杂的相互作用力。
法拉第和麦克斯韦的电场理论使人摆脱了这种让人不满意的状况,这也许是自牛顿时代以来物理学的基础发生的最深刻转变。此外,这种转变还朝着构造上的思辨迈出了一步,增加了理论基础与感觉经验之间的距离。事实上,只有当带电物体出现时,场的存在才会显示出来。麦克斯韦的微分方程把电场和磁场的空间、时间微分系数联系在一起。带电物体不过是电场中散度不为零的地方罢了,而光波则是电磁场在空间中的振荡。
诚然,麦克斯韦仍然试图用机械的以太模型来机械地解释他的场论。但随着赫兹对这种理论做出新的表示,清除了一切多余的附加物,这些尝试逐渐销声匿迹了。在这种理论中,场最终获得了基础地位,就像牛顿力学中的质点那样。然而,这主要只适用于真空中的电磁场。
起初,物质内部的电磁场理论是非常不能令人满意的,因为在那里必须引入两个电矢量,而两种的关系依赖于介质的本性,无法做任何理论分析。关于磁场,以及电流密度与磁场之间的关系,也有类似的问题。
在这方面,洛伦兹找到了一条通往运动物体的电动力学理论的出路,或多或少避免了随意的假定。他的理论基于以下几个基本假说:
无论在什么地方,包括在有重物体内部,场的载体都是真空。物质之所以参与电磁现象,仅仅是因为物质的基本粒子带有不变的电荷,因此一方面受到有质动力的作用,另一方面又会产生场。基本粒子服从牛顿的质点运动定律。
正是以此为基础,洛伦兹综合了牛顿力学和麦克斯韦的场论。这个理论的缺点在于,它试图结合偏微分方程(真空中的麦克斯韦场方程)和全微分方程(质点的运动方程)来描述现象,这种做法显然是不自然的。其不恰当性表现在,它必须假定粒子的大小有限,以防粒子表面的电磁场变成无穷大,而且无法解释将各个粒子上的电荷保持在一起的巨大的力。洛伦兹清楚并接受自己理论中的这些缺点,不过至少可以大体上正确地解释各种电磁现象。
此外,还有一种考虑超出了洛伦兹的理论框架。带电物体周围有一个对它的惯性做出(明显的)贡献的磁场,难道不可能以电磁作用来解释粒子的总惯性吗?显然,只有把这些粒子解释成电磁偏微分方程的正则解,才能令人满意地解决这个问题。然而,原有的麦克斯韦方程并不允许对粒子做这样一种描述,因为与之对应的解包含一个奇点。理论物理学家一直试图修改麦克斯韦方程来达到这个目标,但并没有成功。于是,我们至今仍然无法建立物质的纯电磁场理论,尽管没有理由达不到这个目标。由于缺乏解决问题的系统方法,人们不再有勇气朝这个方向继续努力。不过在我看来,可以肯定的是,在任何自恰的场论的基础中,除了场这个概念以外,粒子概念不能被额外加入。整个理论必须完全基于偏微分方程,而且它的解不能带奇点。
任何归纳法都导不出物理学的基本概念。不理解这个事实是19世纪的许多研究者犯下的基本哲学错误。也许正是由于这个缘故,分子理论和麦克斯韦理论直到较晚的时候才确立起来。逻辑思维必然是演绎的,它基于假设的概念和公理。应当如何选择这些概念和公理,才能确证由它们导出来的推论呢?
最理想的情况显然是,新的基本假说能够由经验世界本身暗示出来。作为热力学的基本假说,“永动机不存在”便是由经验暗示出来的。伽利略的惯性原理也是如此。而且,相对论的基本假说也是出于同一范畴。相对论使场论得到了意想不到的推广,也使经典力学的基础被取代。
麦克斯韦–洛伦兹理论的成功使人们对真空中电磁学方程的有效性深信不疑,因此特别相信光以恒定的速度c“在空间中”行进。这个光速不变的断言是否对于任何惯性系都有效呢?如果不是这样,那么一个特殊的惯性系,或者更准确地说,(一个参照体的)一种特殊的运动状态就应区别于所有其他运动状态。然而,这似乎与所有力学的和电磁学–光学的实验事实相矛盾。
因此,我们必须把光速不变定律对一切惯性系都有效提升为原理。由此,空间坐标x₁、x₂、x₃和时间x₄必须按照“洛伦兹变换”来变换,它由以下表达式的不变性来刻画:(www.xing528.com)
(如果时间单位的选择使光速c=1)。
通过这种程序,时间便失去了绝对性,而与“空间”坐标结合在一起,在代数上具有(近乎)类似的特征。时间的绝对性,特别是同时的绝对性被破坏了,四维描述作为唯一恰当的描述被引入进来。
同样,为了解释所有惯性系对于所有自然现象都等价,必须假设所有表达一般定律的物理方程组对于洛伦兹变换都是不变的。对这个要求作出详细阐述,正是狭义相对论的内容。
这个理论与麦克斯韦方程相容,但与经典力学的基础不相容。虽然可以修改质点的运动方程(以及质点动量和动能的表达式),使之满足这个理论,但相互作用力的概念以及系统的势能概念却失去了基础,因为这些概念都基于绝对同时性的观念。由微分方程决定的场取代了力。
由于上述理论只允许相互作用由场来产生,因此需要一种引力场论。事实上,提出一种能像牛顿理论那样把引力场归结成一个偏微分方程的标量解的理论并不困难。然而,牛顿的引力理论所表达的实验事实却引向了另一个方向,即广义相对论的方向。
经典力学有一个不能让人满意的特征,那就是在它的基本定律中,同一个质量常数以两个不同的角色出现,即作为运动定律中的“惯性质量”和作为引力定律中的“引力质量”。结果,物体在纯引力场中的加速度与它的材料无关;或者说,在匀加速的坐标系中(相对于一个“惯性系”加速),运动就像在一个均匀的引力场(相对于一个“不动的”坐标系)中一样。如果假定这两种情况完全等效,我们的理论思考就符合了引力质量等于惯性质量这一事实。
由此可知,我们原则上不再有任何理由偏爱惯性系,而且必须承认,坐标(x₁,x₂,x₃,x₄)的非线性变换也有同等地位。如果我们对狭义相对论的坐标系作这样的变换,那么度规
就转换成具有如下形式的广义(黎曼)度规:
其中gμν对于μ和ν是对称的,是x₁,x₂,x₃,x₄的某些函数,它们既描述度规性质,又描述相对于新坐标系的引力场。
这是对力学基础进行解释的重大改进,但经过更加细致的考察就会发现,它所付出的代价是,我们不再能像在原先的坐标系(没有引力场的惯性系)中那样,将新坐标解释成刚体和时钟量度的结果。
广义相对论之路是通过以下假设实现的:这样一种用函数gμν(即用黎曼度规)来表示空间场性质的做法也适合于一般情况,即相对于任何坐标系,度规都不会有狭义相对论的简单的准欧几里得形式。
现在,坐标本身不再表示度规关系,而仅仅表示坐标彼此略有不同的物体“附近”。只要没有奇点,一切坐标变换都是容许的。只有用那些对于这个意义上的任意变换都协变的方程来表达,一般自然定律才有意义(广义协变假设)。
广义相对论的第一个目标是提出一个初步版本,它虽然构不成一个封闭体系,却能以尽可能简单的方式与“可直接观察的事实”相联系。如果这种理论只限于纯粹的引力力学,则牛顿的引力理论就能充当模型。这个初步版本可以这样刻画:
1.保留质点及其质量的概念,给出它的运动定律,也就是把惯性定律翻译成广义相对论的语言。该定律是一个具有测地学性质的全微分方程组。
2.牛顿的引力相互作用定律被一组能由gμν张量组成的最简单的广义协变微分方程组所取代。此方程组是让缩并一次之后的黎曼曲率张量等于零(Rμν=0)而形成的。
这种表述使我们可以处理行星问题,更准确地说,它使我们能够处理质量几乎可以忽略不计的质点在(中心对称的)引力场中的运动问题,这种引力场是由一个假定“静止”的质点所产生的。它不考虑“运动的”质点对引力场的反作用,也不考虑中心质量是如何产生这个引力场的。
与经典力学的类比表明,下面的做法可以使理论完整。我们这样来构造场方程:
其中R是黎曼曲率的标量,Tik是以唯象方式表示的物质的能量张量。选择方程左边,使它的散度恒等于零,于是右边的散度也等于零,这样便产生了偏微分方程形式的物质的“运动方程”。用来描述物质的Tik只引入了另外四个独立的函数(比如密度、压力和速度分量,其中速度分量之间有一个恒等式,而压力与密度之间有一个状态方程)。
通过这种表述,我们将整个引力力学归结成求一个协变的偏微分方程组的解。这种理论避免了经典力学基础的所有那些缺点。据我们所知,它足以表示天体力学观察到的事实。然而,它就像一幢左右不对称的建筑,一侧是用精致的大理石砌成的(方程的左边),另一侧则是用劣质的木材制成的(方程的右边)。事实上,对物质的唯象表示仅仅是一种粗糙的代用品,无法正确处理物质的所有已知性质。
在没有有重物质和电密度的空间中,把麦克斯韦的电磁场理论与引力场理论联系起来并不困难。只要把真空中电磁场的能量张量代入上述方程右边的Tik,并把真空中的麦克斯韦场方程改写成广义协变形式即可。在这些条件下,所有这些方程之间会有足够多的微分恒等式,以确保它们的一致性。还要补充一句,整个方程组的这种必然的形式性质使Tik的符号可以任意选择,这一点后来变得很重要。
人们希望理论的基础尽可能达到最大的统一性,遂多次尝试把引力场和电磁场纳入同一幅统一的图像。这里必须特别提到卡鲁扎和克莱因的五维理论。我认真考虑过这种可能性,觉得宁可接受原有理论的内在不一致,因为构成五维理论基础的全部假说所包含的任意性并不比原有的理论更少。同样的意见也可用于这种理论的投影形式,冯·丹奇克和泡利对此曾作过精心阐述。
以上讨论只涉及没有物质的场的理论。如何从这一点出发,得到关于物质原子构成的完整理论呢?这种理论必须把奇点排除在外,否则微分方程就无法完全决定总的场。广义相对论的场论在这方面的问题与纯粹的麦克斯韦理论对物质的场论表示所面临的问题相同。
这里,对粒子的场论构造似乎再次导致了奇点。人们同样试图通过引入新的场变量以及精心阐述和扩展场方程组来克服这个缺点。然而近来,我与罗森博士合作发现,上述引力场方程与电场方程最简单的结合产生了可以表示为不带奇点的中心对称解(施瓦茨希尔德关于纯粹引力场的著名中心对称解,以及莱斯纳关于电场及其引力作用的解)。我将在第六节简要讨论它。这样似乎就能得到没有附加假说的关于物质及其相互作用的纯粹场论,而且除了纯粹数学上的困难(尽管非常严重),对它作经验检验不会导致别的什么困难。
我们这一代的理论物理学家正期待为物理学建立新的理论基础,它所使用的基本概念会与迄今考察的场论概念大相径庭。这是因为人们发现,对所谓量子现象的数学表示必须采用全新的方法。
正如相对论所揭示的,经典力学的失败与光的有限速度(它不是无穷大)有关,另一方面,在20世纪初又发现了力学推论与实验事实之间的其他各种不一致,这些不一致与普朗克常数h的有限大小(它不是零)有关。特别是,分子力学要求固体的热量和(单色的)辐射密度应当随着绝对温度的下降而成比例地减少,然而经验却表明,它们的减少要比绝对温度的下降快得多。要想对这种现象作出理论解释,必须假定力学系统的能量不能取任意值,而只能取某些分立的值,其数学表示式总与普朗克常数h有关。而且,这种观念对于原子论(玻尔的理论)是至关重要的。无论是否有辐射的发射或吸收,关于这些状态彼此之间的跃迁无法给出因果定律,而只能给出统计定律。对于大约在同一时间得到认真研究的原子的放射性衰变,也可得出类似的结论。物理学家曾花了20多年时间,试图对系统和现象的这种“量子特性”作出统一解释,但没有成功。大约10年前,物理学家终于用两种完全不同的理论方法取得了成功。第一种方法归功于海森伯和狄拉克,另一种归功于德布罗意和薛定谔。没过多久,薛定谔就认识到,这两种方法在数学上是等价的。这里我将尝试概括出德布罗意和薛定谔的思路,因为它比较接近物理学家的思想方法,并附上一些一般思考。
首先,对于一个在经典力学意义上被指定的系统(能量函数是坐标qr以及对应动量pr的给定函数),如何为之指定一系列分立的能量值Hσ呢?普朗克常数h将频率Hσ/h与能量值Hσ联系起来。因此,它足以为该系统指定一系列分立的频率值。这让我们想起一个事实:在声学中,一系列分立的频率值是与一个线性偏微分方程(对于给定的边界条件),即与正弦的周期解相对应的。相应地,薛定谔认为自己的任务是把一个关于标量函数ψ的偏微分方程与给定的能量函数ε(qr,pr)对应起来,其中qr和时间t都是独立变量。这样一来,他便成功地由(对于复函数ψ)方程的周期解实际得出了统计理论所要求的能量Hσ的理论值。
诚然,不可能把薛定谔方程的一个明确解ψ(qr,t)与质点力学意义上的一种明确的运动联系起来。这意味着ψ函数并不能精确地决定qr与时间t的关系。然而依照玻恩的看法,ψ函数的物理意义可以解释如下:(复函数ψ的绝对值的平方)是系统在时刻t位于qr的位形空间中所考察的那个点上的概率密度。因此,薛定谔方程的内容可以简单但不十分精确地概括如下:它决定着系统的统计系综的概率密度在位形空间中随时间的变化。简而言之,薛定谔方程决定着qr的ψ函数随时间的变化。
必须提到,该理论在极限值会回到粒子力学的结果。若薛定谔问题的解所涉及的波长处处都很小,以至于在位形空间中一个波长的距离内,势能的变化几乎无限小,我们就可以在位形空间中选取一个区域G₀,虽然在任何方向都比波长大,但却比位形空间的相关尺寸小。在这些条件下,对于初始时刻t₀,可选择函数ψ,使它在区域G₀之外为零,并且按照薛定谔方程以如下方式变化:在以后的一段时间里至少近似保持着这种性质,但在时刻t,区域G₀移动到另一个区域G。这样就能近似地谈论整个区域G的运动,并且用位形空间中一个点的运动来近似这种运动。于是,这种运动就与经典力学方程所要求的运动相符了。
以粒子射线进行的干涉实验出色地证明,理论所假定的运动现象的波动特征的确符合事实。此外,该理论还轻而易举地证明了一个系统在外力作用下从一个量子态跃迁到另一个量子态的统计定律,而这在经典力学看来仿佛是奇迹。这里的外力由势能的一些与时间有关的微小附加项来表示。在经典力学中,这些附加项只能产生微小的系统改变,而在量子力学中却能产生任何量级的变化,无论这些变化有多大,但相应的概率却很小,这种结果与经验完全符合。甚至是放射性衰变的定律,该理论也能提供至少是概括性的解释。
也许从来没有一种理论像量子理论那样,能为解释和计算如此纷繁复杂的经验现象提供一把钥匙。但尽管如此,在寻求物理学的统一基础时,我认为这种理论容易诱使我们误入歧途,因为虽然只有量子理论能用力和质点这些基本概念建构出来(对经典力学的量子修正),但我相信它是对实在事物的一种不完备的描述。这种描述的不完备性必然导致定律的统计性(不完备性)。接下来我就来谈谈这种观点的理由。
首先要问,ψ函数能在多大程度上描述力学系统的实际状态?假定ψr是薛定谔方程的一系列周期解(按照能量值递增的顺序排列)。至于单个ψr在多大程度上是对物理状态的完备描述,这个问题我暂不考虑。一个系统先是处于状态ψ₁,对应于最低的能量ε₁,然后在有限的时间内受到小的外力扰动,那么在稍后的某个时刻,由薛定谔方程可以得到如下形式的ψ函数:
其中cr是(复)常数。如果ψr是“归一化的”,那么|c₁|近乎等于1,|c₂|等等则远小于1。我们现在会问:ψ描述了系统的真实状态吗?如果答案为是,我们就不得不赋予这个状态以确定的能量ε[134],且此能量略大于ε₁(在任何情况下都有ε₁<ε<ε₂)。然而,如果考虑到密立根对电荷分立本性的证明,这个假定与弗兰克和赫兹所做的电子碰撞实验是矛盾的。事实上,这些实验引出了这样的结论:介于量子值之间的能量值是不存在的。由此得知,函数ψ无法描述系统的同质状态,而只能代表一种统计描述,其中cr表示单个能量值出现的概率。因此,情况似乎很清楚,玻恩关于量子理论的统计诠释是唯一可能的诠释。ψ函数不可能描述单个系统的状态,而是涉及多个系统,或者说统计力学意义上的“系综”。如果说除了某些特殊情形,ψ函数只提供关于可测量量的统计数据,这不仅是因为测量操作引入了只能在统计上把握的未知要素,而且也因为ψ函数在任何意义上都不描述单个系统的状态。不论单个系统是否受到外界的作用,薛定谔方程都决定着系综所经历的时间变化。
这种诠释也消除了我和两位同事最近证明的那个悖论,它与下面这个问题有关。
考虑由两部分系统A和B所组成的力学系统,这两部分系统只在有限时间内发生相互作用。假设发生相互作用前的ψ函数是已知的,则相互作用后的ψ函数由薛定谔方程决定。现在让我们通过测量来尽可能完备地确定部分系统A的物理状态,则根据量子力学,我们可以由所做的测量和整个系统的ψ函数来确定部分系统B的ψ函数。然而,这种确定所给出的结果却要依赖于被测量的是A的哪个(可观测的)物理量(比如是坐标还是动量)。既然相互作用后B只可能有一个物理状态,而且不能认为它依赖于我们对与B分隔开的系统A所做的测量,因此可以断言,ψ函数与物理状态并非明确对应。几个ψ函数与系统B的同一物理状态的这种对应再次表明,不能把ψ函数解释成对单个系统物理状态的(完备)描述。这里同样是ψ函数与系综的对应消除了所有困难。[135]
量子力学以这种简单的方式提供了从一个状态(表观上)不连续地跃迁到另一个状态的陈述,却不实际描述具体过程,这与该理论不能描述单个系统而只能描述多个系统的总和有关。我们第一个例子中的系数cr在外力作用下其实变动很小。根据对量子力学的这种诠释,我们就可以理解,为什么这种理论很容易说明,微弱的扰动力就能使一个系统的物理状态发生任意大小的改变。事实上,这种扰动力只会使系综中的统计密度发生相应的微小变化,因此只会使ψ函数发生无限微弱的变化,对它的数学描述要比对单个系统所经历的有限变化进行数学描述容易得多。当然,这种思考方式完全弄不清楚单个系统发生了什么事情,统计进路的描述完全消除了这个谜一样的事件。
近年来,威尔逊云室和盖革计数器等令人惊异的发明已经把这些单个事件带到我们眼前。现在我要问,在这种情况下,难道真有哪位物理学家会相信,我们永远也无法理解单个系统的这些重要变化、结构和因果关系吗?这在逻辑上不仅可能,而且无矛盾,但与我的科学本能格格不入,我无法放弃追求更完备的观念。
除了这些考虑,还有另一种思考也表明,量子力学所引入的方法不大可能为整个物理学提供有用的基础。在薛定谔方程中,绝对时间和势能扮演着决定性的角色,而由相对论已经认识到,这两个概念在原则上是不能容许的。要想摆脱这种困难,就需要把理论建立在场和场定律而不是相互作用力的基础上。这引导我们把量子力学的统计方法应用于场,也就是说,应用于有无穷多自由度的系统。虽然迄今为止所做的尝试仅限于线性方程,从广义相对论的结果可以知道这是不够的,但即使是这样,目前面临的复杂性已经非常惊人。若要服从广义相对论的要求(原则上没有人会怀疑这种要求的合理性),复杂性肯定还会增加。
诚然,有人已经指出,鉴于一切在小尺度上出现的东西都有分子结构,可以认为引入空间–时间连续体是违反自然的。他们主张,海森伯方法的成功也许暗示,可以用一种纯代数方法来描述自然,也就是从物理学中取消连续函数。但那样一来,我们也必须原则上放弃空间–时间连续体。可以设想,人类的聪明才智有朝一日真能找到这样的方法,不过目前,这种纲领还像空中楼阁。
毫无疑问,量子力学已经把握住了许多真理,对于未来的任何理论基础来说,它都是一块试金石,因为它必须能作为极限情况从那个基础中推导出来,就像静电学能从麦克斯韦电磁场方程中推导出来,或者热力学能从经典力学中推导出来一样。但我不相信量子力学能作为寻求这种基础的出发点,就像不能相反地从热力学(关系到统计力学)出发找到力学的基础一样。
考虑到这种情况,认真考虑场物理学的基础是否无论如何都无法与量子现象协调起来,就显得完全合理了。采用目前的数学工具,难道不是只有以场论为基础,才能适应广义相对论的要求吗?今天的物理学家往往认为,这种尝试是没有希望的,这种信念也许来源于一个没有根据的看法,即认为这种理论在一级近似中必须导出粒子运动的经典力学方程,或者至少要导出全微分方程。事实上,到目前为止,所有以场来描述粒子的理论都含有奇点,我们无法就这些粒子的行为先验地说出任何东西。但有一件事情是确定的:如果一种场论可以不带奇点地描述粒子,那么这些粒子随时间的行为就完全由场的微分方程来决定了。
我现在要表明,根据广义相对论,场方程存在着不带奇点的解,可以解释为代表粒子。这里我只限于中性粒子,因为在最近发表的与罗森博士合作的另一篇论文中,我已经详细讨论了这个问题,而且因为在这种情况下,问题的实质可以完整地显示出来。
引力场完全由张量gμν描述。在三指标符号Γσμν中也出现了逆变张量gμν,它被定义为gμν的子行列式除以行列式g(=|gαβ|)。要使Rik能被定义且有限,不仅连续体每一点的邻近都要有一个坐标系,在这个坐标系中,gμν及其一阶微分系数是连续和可微的,而且行列式g必须处处不为零。但如果用g²Rik=0来代替微分方程Rik=0,那么最后一个限制就不再需要,因为方程左边是gik及其导数的有理整函数。
这些方程有施瓦茨希尔德给出的中心对称解:
这个解在r=2m处有一个奇点,因为dr²的系数(即g11)在这个超曲面上变成无限大。但如果用下列方程定义的ρ来代替变量r:
我们就得到
这个解对于ρ的所有值都是正则的。对于ρ=0,dr²的系数(即g44)也等于零,由此固然可以推出行列式g等于零,但根据我们实际采用的场方程的写法,这并不构成奇点。
如果ρ从-∞变到+∞,则r就从+∞变到r=2m,然后又回到+∞。而当r<2m时,并没有对应的ρ的实数值。因此,通过把物理空间表示成沿着超曲面ρ=0(也就是r=2m)相接触的两个相同的“薄片”,在这个超曲面上,行列式g等于零,施瓦茨希尔德解就成了一个正则解。我们把两个(相同的)薄片之间的这种连接称为“桥”。于是,有限区域内两个薄片之间的这种桥的存在就对应于物质中性粒子的存在,这种粒子可以用不带奇点的方式来描述。
解决中性粒子的运动问题,显然就相当于发现引力方程(写成不带分母的形式)的包含多个桥的解。
由于“桥”本质上是分立的,因此,上述观念先验地对应于物质的原子论结构。我们还看到,中性粒子的质量常数m必然为正,因为没有一个不带奇点的解能与m是负值的施瓦茨希尔德解相对应。只有考察多桥问题才能表明,这种理论方法能否解释为什么自然界的粒子具有相等的质量,以及能否说明量子力学已经如此美妙地理解的那些事实。
以类似的方式也可以表明,引力方程与电方程相结合(在引力方程中恰当选取电的部分的正负号)会产生对带电粒子的不带奇点的桥表示。在这种解当中,最简单的是无引力质量的带电粒子的解。
只要没有克服与多桥问题的解相关的巨大的数学困难,从物理学家的观点来看,就不能说这种理论有什么用处。但事实上,它第一次尝试以场论对物质的性质作出一致的解释。这种尝试的另一个优点是,它所基于的是今天已知最简单的相对论性场方程。
物理学构成了一个不断演化的逻辑思想系统,它的基础无法用归纳法从经验中提取出来,而只能靠自由发明而得到。这种系统的正当性(真理内容)在于导出的命题可以用感觉经验来证实,而感觉经验与基础的关系只能直觉地把握。物理学的演化使逻辑基础变得越来越简单。为了进一步接近这个目标,我们必须容许逻辑基础越来越远离经验事实,而从基础到那些与感觉经验相关联的导出命题的思想道路,也变得越来越艰难和漫长了。
我们的目标是尽可能简要地概述基本概念的发展及其与经验事实的关系,以及为达到系统的内在完美性而付出的努力。这些考虑旨在阐明在我看来目前的事态。(扼要的历史阐述难免会有主观色彩。)
我试图表明,物体、空间、主观时间和客观时间这些概念是如何彼此关联以及与我们的经验相关联的。在经典力学中,空间和时间概念是相互独立的。在这个基础中,物体概念被质点概念所取代,从而使力学从根本上成为原子论的。在试图使力学成为整个物理学的基础时,光和电产生了无法克服的困难。由此我们被引到电的场论,随后又尝试把物理学完全建立在场的概念的基础上。这种尝试引出了相对论(空间和时间概念演化成有度规结构的连续体的概念)。
此外我还试图表明,为什么我认为量子理论似乎无法为物理学提供恰当的基础:若把理论的量子描述当成对单个物理系统或事件的完备描述,就会陷入矛盾。
另一方面,场论尚不能解释物质的分子结构和量子现象。但我已经表明,相信用场论的方法无法解决这些问题,这乃是基于偏见。
[129]载《富兰克林研究所学报》(The Journal of the Franklin Institute, Vol. 221, No. 3. March, 1936)。
[130]事物的本性决定我们只能通过自己创造的概念来谈论这些物体,而这些概念本身是无法定义的。然而重要的是,我们使用的概念与我们的经验无疑是对应的。——作者注
[131]“geometry”一词的字面意思是测地术。——译者注
[132]“乞题”(petitio principii),即“以假定作为论据来辩论”,它与循环论证高度相关但并不完全一样。——译者注
[133]只有找到一种对所有B₀都有效的力学,才能消除该理论的这个缺陷。这是通向广义相对论的一个步骤。第二个缺陷在于,牛顿力学本身解释不了质点的引力质量与惯性质量相等,这同样要通过引入广义相对论才能消除。——作者注
[134]因为根据相对论的一个已经充分证实的结论,一个静止的完整系统的能量等于它的整个惯性,而这必须有确定的值。——作者注
[135]例如,对A的测量会涉及向较小系综的跃迁。后者(因此它的ψ函数)依赖于对系综的这种缩小所根据的是哪种观点。——作者注
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。