首页 理论教育 论理论物理学的方法:爱因斯坦自选集

论理论物理学的方法:爱因斯坦自选集

时间:2023-08-14 理论教育 版权反馈
【摘要】:完整的理论物理学体系是由概念、对这些概念有效的基本定律以及通过逻辑演绎而导出的结论所组成的。但如果认为欧几里得几何学研究的是准刚体在空间中可能的相互关系,也就是将它看成一门物理科学,而不是抽出它原初的经验内容,那么几何学与理论物理学在逻辑上的同质性就完整无缺了。牛顿第一次创造出一个全面可行的理论物理学系统,他仍然相信其系统的基本概念和定律可以从经验中推导出来。

论理论物理学的方法:爱因斯坦自选集

若想从理论物理学家那里了解他们使用什么方法,我建议坚持这样一条原则:不要听其言,而要观其行。对于这个领域的发现者而言,其想象力的产物是如此必然和自然,以至于他会认为并且希望别人也认为,它们不是思想的创造,而是既定的实在。

这些话听起来像是让大家离开这个讲堂。因为你们可能会心想,这个人是从事实际工作的物理学家,因此应把理论科学的结构问题留给认识论者去研究。

针对这种批评,我可以从个人观点为自己辩护,向大家保证我不是自己要来的,而是应别人的友好邀请才登上这个为纪念一个毕生追求知识统一性的人而设立的讲坛。但事实上,我站在这里是有正当理由的:了解一个毕生致力于澄清和改进科学基础的人是如何思考他的科学的,也许会让人感兴趣。他对这门科学的过去与现在的看法,也许太过依赖于他对未来的期待和目前的追求,但这是任何一个深深地沉浸在思想世界中的人所不可避免的命运。类似的情况也发生在历史学家身上,历史学家也以同样的方式——尽管可能是无意识地——根据自己对人类社会所形成的理想把实际事件组织起来。

现在让我们浏览一下理论体系的发展,同时特别注意理论内容与经验事实总和之间的关系。它涉及这个领域里两个不可分割的知识的组成部分,即经验与理性之间的永恒对立。

古希腊被誉为西方科学的摇篮。这里第一次见证了欧几里得几何学这个逻辑系统的奇迹,该体系一步步地精确产生出来,以至于它的每一个命题都是绝对不容置疑的。理性的这项惊人成功使人的理智有信心做出后来的成就。倘若欧几里得未能激起你少年时代的热情,你就不是一个天生的科学思想者

但科学要想成熟到能将整个实在包含在内,还需要另一种基本认识,这种认识直到开普勒和伽利略的出现才成为哲学家的共识。单凭逻辑思维无法使我们获得关于经验世界的知识,一切关于实在的知识都是从经验出发,以经验结束。通过纯逻辑手段得到的命题对于实在来说是完全空洞的。伽利略认识到了这一点,尤其是因为他向科学界反复灌输这一点,他才成为近代物理学之父,事实上也是整个近代科学之父。

然而,如果经验是我们关于实在的一切知识的起点和终点,那么纯粹理性在科学中又起什么作用呢?

完整的理论物理学体系是由概念、对这些概念有效的基本定律以及通过逻辑演绎而导出的结论所组成的。这些结论必须符合我们单独的经验。在任何理论著作中,对它们的逻辑推导几乎要占据全部篇幅。

在欧几里得几何学中,情况正是如此,只不过那里的基本定律被称为公理,而且也没有结论必须符合经验的问题。但如果认为欧几里得几何学研究的是准刚体在空间中可能的相互关系,也就是将它看成一门物理科学,而不是抽出它原初的经验内容,那么几何学与理论物理学在逻辑上的同质性就完整无缺了。

这样我们就指定了理性和经验在一个理论物理学系统中的位置。理性给出了该系统的结构,而经验内容及其相互关系则应在理论的结论中得到表达。整个系统,尤其是它的基本概念和基本原理,其唯一的价值和理由就在于这样一种表达的可能性。此外,这些基本概念和基本原理都是人类理智的自由发明,既不能通过人类理智的本性、也不能以任何先验的方式来证明。

这些在逻辑上无法进一步还原的基本概念和假设构成了理论不可或缺的部分,它们是理性所无法把握的。所有理论的崇高目标都在于让这些不可还原的基本要素尽可能简单,数量尽可能少,同时不必放弃对任何经验内容的恰当表达。

我刚才概述的关于科学理论基础具体纯虚构性的观点在18-19世纪绝不占主导地位,然而它目前却日渐流行,因为逻辑结构越简单,也就是支撑整个结构所需的逻辑上独立的概念要素越少,基本概念和定律与必须同我们的经验相联系的那些结论在思想上的距离就越大。

牛顿第一次创造出一个全面可行的理论物理学系统,他仍然相信其系统的基本概念和定律可以从经验中推导出来。这无疑就是他所说的“我不杜撰假说”的意思。(www.xing528.com)

事实上,时间和空间概念在那时似乎还没有什么问题。质量、惯性和力的概念以及把它们联系起来的定律似乎都直接来自经验。然而,一旦接受这个基础,引力的表达式似乎就可以从经验中推导出来,而且可以合理地期待别的力也是如此。

从牛顿的表述中可以看出,包含着绝对静止概念的绝对空间概念使他感到不安。他意识到,绝对静止概念在经验中似乎没有对应。对于引入超距作用力,他也感到不安。但他的学说在实践上取得的巨大成功很可能阻碍了他和18-19世纪的物理学家认识到其系统基础的虚构性。

恰恰相反,当时的自然哲学家大都认为,物理学的基本概念和假设并非人的心灵在逻辑意义上的自由发明,而是可以通过“抽象”——即通过逻辑方式——从经验中推导出来。事实上,直到广义相对论出现,人们才清楚地认识到这种看法是错误的。广义相对论表明,可以在完全不同于牛顿的基础上,以更加令人满意和更加完备的方式来解释更广的经验事实。然而,撇开理论的优越性问题不谈,基本原理的虚构性是非常明显的,因为我们可以指出两条与经验大体符合但本质上不同的原理。由此可以证明,任何以逻辑方式从基本经验中导出力学的基本概念和假设的努力都注定要失败。

如果理论物理学的公理基础不能从经验中抽取出来,而必须是自由发明,那么还是否有希望找到正确的道路呢?这条正确的道路难道仅存于我们的幻想吗?如果一些理论(比如经典力学)能在很大程度上恰当地处理经验,但没有从深层次把握事物,那么我们还能否指望把经验当作我们可靠的向导呢?对此我会毫不犹豫地回答:我认为的确存在着这样一条正确的道路,并且有能力找到它。根据已有的经验,我们有理由相信,大自然是可以设想的最简单数学观念的实现。我深信,通过纯粹的数学构造,我们能够发现那些概念以及把它们联系起来的定律,它们为理解自然现象提供了钥匙。经验也许可以暗示恰当的数学概念,但数学概念绝不可能从经验中推导出来。当然,经验始终是判断数学构造是否有物理用处的唯一标准,但创造性原则却在数学之中。因此在某种意义上我认为,纯粹思维能够把握实在,就像古代人所梦想的那样。

为了证明这种信念是正当的,我不得不使用一个数学概念。物理世界被表示为一个四维连续体。若假定其中有一种黎曼度规,并探究这种度规可以满足哪些最简单的定律,那么我就得到了真空中的相对论性引力论。若假定从空间中可以导出一个矢量场或反对称张量场,并探究这种场可以满足哪些最简单的定律,那么我就得到了真空中的麦克斯韦方程。

在这里,我们仍然缺少理论来描述空间中电荷密度不为零的那些部分。德布罗意曾推测有一种波场存在,可以解释物质的某些量子性质。狄拉克发现旋量是一种新的场量,其最简单的方程使人能基本上推出电子的性质。现在,我与我的同事瓦尔特·迈尔博士合作发现,这些旋量构成了一种在数学上与四维相联系的新的场的特例,我们称之为“半矢量”。这种半矢量可能服从的最简单方程为理解具有不同静止质量和相反等量电荷的两种基本粒子的存在提供了钥匙。除了通常的矢量,这些半矢量就是四维度规连续体里数学上最简单的场,它们似乎能够自然地描述带电粒子的某些根本性质。

对我们来说重要的是,所有这些构造以及把它们联系起来的定律都可以通过寻求数学上最简单的概念及其联系这一原则来得到。在数学上存在的简单的场的类型以及它们之间可能存在的简单方程,两者的数目都很有限,这正是理论家们深入把握实在的希望所在。

同时,这种场论最大的困难在于理解物质和能量的原子结构。因为该理论只使用空间的连续函数,所以就其基础而言是非原子的,这与经典力学相反,经典力学最重要的要素是质点,它本身就已经恰当地处理了物质的原子结构。

现代量子论与德布罗意、薛定谔和狄拉克等人的名字联系在一起,并且使用连续函数,它用一种由马克斯·玻恩最早清晰给出的大胆解释克服了这些困难:方程中出现的空间函数并不是原子结构的数学模型。这些函数据说只决定了测量时这种结构处于特定地点或特定运动状态下的数学概率。这种想法在逻辑上是无可非议的,而且已经取得了重大成功。但不幸的是,它迫使人们使用一种连续体,其维数并不是迄今为止物理学的空间维数(即四维),而是随着组成系统的粒子数目而无限增加。必须承认,我认为这种解释只有一种暂时的意义。我仍然相信可能有一种实在模型,即这样一种理论:它描述的是事物本身,而不仅仅是它们出现的概率。

另一方面,我认为必须放弃理论模型中粒子完全定域的想法。在我看来,这是海森伯不确定性原理的最终结果。但完全可以设想一种真正意义上的原子理论(而不仅仅是基于一种解释),不赋予粒子在数学模型中的定域性。例如,为了解释电荷的原子特征,只需使场方程导出以下结论:边界上电荷密度处处为零的三维空间区域永远包含总量为整数的总电荷。在连续体理论中,原子特征可以由积分定律令人满意地表示出来,而不必确定组成原子结构的那些东西的位置。

直到以这种方式将原子结构成功地表示出来,我才会认为量子之谜得到了解决。

[125]1933年6月10日在牛津所作的斯宾塞讲座,收录于1934年《我的世界观》。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈