在这个焦虑不安的时代,人世沉浮中难寻乐趣,此时想起开普勒这般卓越而宁静的人,特别感到欣慰。在开普勒生活的时代,还不能确定自然受定律的支配。在无人支持和极少有人了解的情况下,他数十年如一日,孤独地投身于艰苦繁重的工作,对行星的运动及其数学定律进行经验研究。他对自然定律的存在该是怀有多么坚定的信念,才能获得这种力量啊!若想好好缅怀他,我们应尽可能地看清楚他的问题以及解决问题的各个步骤。
哥白尼已经让最有才智的人看到,要想清楚地把握行星在天空中的视运动,最好的办法是把这些运动看成行星围绕静止的太阳所做的转动。倘若行星围绕一个以太阳为中心的圆做匀速运动,那么查明这些运动从地球上看是怎样的就比较容易了。然而,所要处理的现象远比这复杂,任务也就艰巨得多。首先要根据第谷·布拉赫的行星观测结果从经验上确定这些运动,然后才能发现这些运动所满足的一般定律。
要想了解确定围绕太阳的实际运转有多么困难,需要弄清楚以下这些事情:我们永远也看不到行星在某一时刻实际所处的位置,而只能从地球上看到它那时在什么方向,而地球本身又以未知的方式围绕太阳运动。于是,这些困难几乎显得无法克服。
为了给这种混乱带来秩序,开普勒不得不另辟蹊径。他意识到,必须首先设法确定地球本身的运动。倘若只有太阳、地球和恒星,而没有别的行星,这根本是做不到的。因为在那种情况下,除了日地连线方向在一年中的变化情况(太阳相对于恒星的视运动),我们无法从经验上确定任何别的东西。即使当时还没有望远镜,肉眼的观测精度已经能够发现,日地连线的这些方向全都位于一个相对于恒星静止的平面上。由此也能确定日地连线是以何种方式围绕太阳旋转的。他发现,这种运动的角速度在一年中呈现出规律性的变化。但这没有多大用处,因为我们还不知道日地距离在一年中是如何变化的。只有知道这个变化,才能确定地球轨道的真实形状及其运行方式。
开普勒找到了一个奇妙的方法来摆脱这种困境。首先,对太阳的观测表明,在一年的不同时间里,太阳在相对于恒星背景的视路径上的速度各不相同,然而在天文年的同一时间,这种运动的角速度却总是相同。也就是说,当日地连线指向同一恒星区域时,该直线的转动角速度也总是相同。因此应当假定地球轨道是封闭的,地球每年都沿着它做相同的运转,这绝非理所当然。对于哥白尼体系的追随者来说,几乎可以肯定,其他行星轨道也有同样的性质。
这无疑使问题变得更容易了。但如何确定地球轨道的真实形状呢?设想在轨道平面的某处有一盏明亮的灯M。我们知道,若是这盏灯永远固定在这个位置上,它就能成为对地球轨道进行三角测量的一个定点,地球上的人在每年的任何时候都能看到它。假设这盏灯M距离太阳比地球距离太阳还要远,借助这盏灯就能按照以下方式确定地球轨道:
首先,每年都有这样一个时刻,地球E恰好处于太阳S与灯M的连线上。如果此时从地球E看灯M,我们的视线就会与SM(太阳–灯)这条线重合。想象把后者在天穹上标记下来,再设想地球处在不同的时间和位置上。既然太阳S和灯M从地球上都可以看见,三角形SEM中的角E便是已知的。然而通过对太阳的直接观测,也可以知道SE相对于恒星的方向,而此前SM连线相对于恒星的方向也已经确定。我们也知道三角形SEM在S处的角度。于是,我们在纸上随意画出底边SM,凭借我们对角E和角S的认识,就可以作出三角形SEM。我们可以在一年中重复这样做,每一次都在纸上画出地球E相对于那条永远固定的底边SM的位置,并且给它注上日期,由此便可以从经验上确定地球的轨道,当然,这还不是它的绝对尺寸。(www.xing528.com)
但你们会说,开普勒到哪里去找这盏灯M呢?他的天才以及此时仁慈的大自然给予了他这盏灯。他注意到,火星年即火星围绕太阳走一圈的时间是已知的。太阳、地球和火星有可能在某一时刻恰好排成一条直线。由于火星沿一个封闭的轨道运转,所以每过一个火星年,火星就会出现在这个位置上。因此,在这些已知时刻,SM总是固定的底边,而地球总是处在轨道的不同位置上。于是在这些时刻,火星就起着我们前面设想的那盏灯的作用,可以通过观测太阳和火星来确定地球的真轨道。就这样,开普勒发现了地球轨道的真实形状以及地球的运转方式。我们这些后来者——欧洲人、德国人甚至是我故乡的施瓦本人——都因此而钦佩和尊敬他。
地球轨道既已由经验确定下来,SE直线在任一时刻的真实位置和长度也就知道了。现在开普勒要从行星观测结果计算出其他行星的轨道和运动已经不再过于困难,至少原则上是如此。但这仍然是一项极为艰巨的工作,尤其是考虑到当时的数学状况。
现在我们来谈谈开普勒人生中第二项同等艰巨的工作。行星轨道已经从经验中知晓,但其定律还必须从经验数据中猜测出来。他必须首先猜测轨道曲线的数学性质,然后用一大堆图形去试验。如果不合适,就必须再想出一种假说去试验。经过无数次尝试,他终于发现符合事实的假定是:行星轨道是一个椭圆,而太阳位于它的一个焦点上。开普勒也发现了行星在运转过程中速度变化的定律,即太阳与行星的连线在相等时间内扫过相等的面积。最后他还发现,行星运转周期的平方与椭圆长轴的立方成正比。
我们在赞叹这位卓越人物的同时,另一种赞叹和敬畏也油然而生。不过这种感情的对象不是人,而是孕育我们的那个神秘和谐的大自然。古人已经设计出一些曲线来表示可以设想的最简单的规律性。其中除了直线和圆,最重要的就是椭圆和双曲线。我们看到,最后这两种曲线在天体的轨道中得到了实现,至少近乎得到实现。
看来,在事物中找到形式之前,人的心灵应当先把形式独立地构造出来。开普勒的惊人成就特别彰显了一个真理:知识不可能单纯来源于经验,而只能将理智的发明与观察到的事实相比较才能得到。
[123]为纪念开普勒逝世三百周年所写的文章,发表于1939年11月9日德国《法兰克福日报》(Frankfurter Zeitung)。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。