二百年前的今天,牛顿与世长辞。此时此刻,我们缅怀这位卓越的天才,他空前绝后地决定着西方思想、研究和实践的走向。他不仅天才地发明了一些关键的方法,而且善于掌握当时已知的经验材料,在发明详细的数学物理证明方法上更是极富创造性。因此,他理应得到我们最高的尊敬。然而,牛顿的重要性不仅在于他的天才,更在于命运把他置于人类思想发展史的一个转折点上。为了看清楚这一点,我们需要意识到,在牛顿以前并没有一个完备的物理因果性系统,能够描述经验世界更深的特征。
虽然古希腊那些伟大的唯物论者主张,一切物质事件都应归因于有严格规律的原子运动过程,而不允许将任何生物的意志当作独立的原因。笛卡尔也曾以自己的方式重新研究过这个问题,但它始终只是一种大胆的愿望、一派哲学家的可疑理想。在牛顿以前,支持人们相信存在着完整的物理因果链条的实际成果还几乎不存在。
牛顿旨在回答这样一个问题:是否存在着一条简单的规则,当所有天体在某一时刻的运动状态皆为已知时,能用这条规则完全计算出我们行星体系中天体的运动?摆在他面前的是由开普勒、第谷·布拉赫的观测结果推导出来的关于行星运动的经验定律,而这是需要解释的。[121]虽然这些定律已经完整地回答了行星如何绕太阳运转:轨道的椭圆形,半径在相等时间扫过相等的面积,半长轴与旋转周期之间的关系,但这些规则并不满足因果解释的要求。这三条规则在逻辑上彼此独立,没有显示出内在关联。如果中心星体不是太阳,第三定律就不再定量地适用。(例如,行星围绕太阳运转的周期与卫星围绕行星运转的周期之间就毫无关系。)但最重要的是,这些定律关心的是整体的运动,而不是一个系统在这一时刻的运动状态如何产生下一时刻的运动状态。用现在的话来说,它们是积分定律而不是微分定律。
只有微分形式的定律才能完全满足现代物理学家对因果性的要求。牛顿最伟大的思想成就之一就在于清晰地构想了微分定律。所需要的不仅是这种观念,还有一种数学的形式体系,它当时还很初步,但需要获得一种系统形式。牛顿在微积分中也找到了这种形式体系。这里我们不必考察莱布尼茨是否独立于牛顿发现了这种数学方法。无论如何,对牛顿来说,发展出这种方法是绝对必要的,因为只有借助于这种方法才能表达他的思想。
伽利略已经朝着认识运动定律迈出了重要一步。他发现了惯性定律以及地球引力场中的自由落体定律:一个质量(或者更精确地说是一个质点)在不受其他质量影响时做匀速直线运动。自由落体在引力场中的竖直速度随时间而均匀增加。今天我们也许会以为,从伽利略的认识到牛顿的运动定律只有一步之遥。但要注意,上面这两则陈述都只与整个运动有关,而牛顿的运动定律则回答了这样一个问题:在外力的影响下,一个质点的运动状态在无限短的时间内是如何变化的?只有考虑了无限短的时间内发生了什么(微分定律),牛顿才能得到一个适用于任何运动的公式。他从当时已经相当成熟的静力学中借用了力的概念。只有引入新的质量概念,他才能把力与加速度联系起来。说来也奇怪,支撑这个新概念的竟然是一个虚构的定义。今天我们已经非常习惯于形成那些对应于微商的概念,以至于我们已经很难理解,通过二次极限过程得到普遍的微分定律需要怎样非凡的抽象能力了,而且在这个过程中,还必须发明出质量概念。
然而,对于运动的因果理解还远未达成。因为只有当力已经给定时,才能由运动方程确定运动。大概是受到了行星运动定律的启发,牛顿设想,作用于一个质量上的力,由与该质量距离足够近的所有质量的位置来决定。只有知道了这种关联,才能完全从因果上理解运动。大家都知道,牛顿从开普勒的行星运动定律出发解决了引力问题,从而发现作用于星体的推动力和引力本质上是相同的。正是“运动定律与引力定律的结合”才形成了一个美妙的思想结构,它使我们可以根据系统在某一时刻的状态计算出它在过去和未来的状态,只要一切事件只在引力的作用下发生。牛顿概念体系的逻辑完备性就在于,一个系统中各个质量的加速度仅仅由这些质量本身所引起。
根据这里概述的基础,牛顿成功地解释了行星、卫星和彗星的运动,直至最小的细节,还有潮汐和地球的进动——这是无比辉煌的演绎成就。认识到天体运动的原因就是我们日常经验中非常熟悉的重力,这一发现必然令人惊叹不已。
但牛顿成就的重要性并不只是为实际的力学创造出一种逻辑上令人满意的切实可行的基础。在19世纪末以前,它一直是所有理论物理学家的纲领。所有物理事件都应追溯到那些服从牛顿运动定律的物体。只需扩展力的定律,使之适用于所考察的那类事件就可以了。牛顿本人曾试图把这一纲领用于光学,他预先假定光由惯性微粒所组成。当牛顿运动定律被用于连续分布的质量之后,光的波动说也利用了牛顿运动定律。牛顿的运动方程也是热的运动论的唯一基础,这种理论不仅为发现能量守恒定律做了思想上的准备,还给出了一种直至最终细节都能得到确证的气体理论,以及关于热力学第二定律本质的一种更深刻的看法。电学和磁学也一直沿着牛顿的基本思想发展到现代(电性物质、磁性物质、超距作用力)。甚至连法拉第和麦克斯韦的电动力学和光学革命也完全是在牛顿思想的引导下发生的,这是牛顿以后理论物理学基础的第一次重大根本进展。麦克斯韦、玻耳兹曼和开尔文勋爵不厌其烦地把电磁场及其动力学相互作用归因于假想的连续分布质量的机械作用。但由于这些努力没有成效或至少是没有显著成效,所以自19世纪末以来,我们的基本观念逐渐发生了转变。理论物理学的发展超出了牛顿的框架,在将近二百年的时间里,此框架一直使科学稳定发展并且给予思想上的引领。
从逻辑的观点看,牛顿的基本原理是如此令人满意,以致更新它们的动力只能源自经验事实的要求。在讨论这一点之前,我必须强调,牛顿本人比他之后的几代学者更清楚自己思想结构中固有的弱点。这总是让我对他怀有深深的敬意,因此我想花点时间谈谈这个问题:
1.尽管牛顿处处竭力把他的思想体系表现为由经验必然决定,并且尽可能少地引入不直接指涉经验对象的概念,但他还是提出了绝对空间和绝对时间的概念。为此,近年来他常常受到批评。但恰恰在这一点上,牛顿特别前后一致。他已经认识到,可观察的几何量(质点的间距)及其时间进程并不能在物理上完全刻画运动。他以著名的水桶实验来证明这一点。因此,除了质量及其随时间而变化的距离,还要有另一种东西来决定运动。他认为,这种“东西”就是与“绝对空间”的关系。他认识到,要想让他的运动定律有任何意义,空间就必须拥有一种物理实在性,就像质点及其距离的实在性一样。
这种清楚的认识既显示了牛顿的智慧,也暴露了他理论的弱点。因为如果没有这个模糊的概念,其理论的逻辑结构必定会更令人满意;在那种情况下,只有同知觉的关系完全清晰的东西(质点、距离)才会进入定律。(www.xing528.com)
2.引入不需要中介、瞬时传递的超距作用力来表示引力的作用,并不符合我们日常经验中所熟知的大多数过程的特征。对于这种反驳,牛顿指出,他的引力相互作用定律不应被视为最终的解释,而应视作一条从经验中归纳出来的规则。
3.物体的重量和惯性是由同一个量(质量)来决定的。对于这个极为引人注目的事实,牛顿的理论并没有给出解释。牛顿也意识到了这一事实的不同寻常。
以上三点都不构成对于理论的逻辑反驳。在某种意义上,它们只是代表着科学家在努力从概念上完整和统一地把握自然现象的过程中那些未能满足的愿望。
被视为整个理论物理学纲领的牛顿运动学说,从麦克斯韦的电学理论那里遭受了第一次打击。事实表明,物体之间的电磁相互作用并非由瞬时传递的超距作用力所引起,而是由一种以有限速度穿过空间传播的过程所引起。根据法拉第的构想,除了质点及其运动,还有一种新的物理实在,那就是“场”。起初人们依照力学的思维方式,试图把场解释为一种充满空间的假想介质(以太)的力学状态(运动状态或应力状态)。然而经过顽强的努力,这种力学解释依然不管用,此时人们便渐渐习惯于把“电磁场”看成物理实在的最终不可还原的组分。我们要感谢海因里希·赫兹有意使场的概念摆脱了来自力学概念库的一切附属物,还应感谢洛伦兹使场的概念摆脱了物质载体。按照洛伦兹的说法,唯一能够充当场之载体的东西就是物理真空(或以太),而真空即使在牛顿力学中也不是完全没有物理功能的。等到认识了这一点,就再也没有人相信直接而瞬时的超距作用了,甚至在引力领域也是如此,虽然由于缺乏足够的事实知识,关于引力的场论还没有清晰地勾勒出来。牛顿的超距作用力假说一旦被抛弃,电磁场理论的发展就会引导人们尝试用电磁方式来解释牛顿的运动定律,或者说用一种建立在场论基础上的更加精确的运动定律来取代牛顿运动定律。虽然这种努力尚未完全成功,但力学的基本概念已经不再被视为物理世界观的基本组分。
麦克斯韦和洛伦兹的理论必然会导向狭义相对论,而狭义相对论既然放弃了绝对同时性概念,也就排除了超距作用力的存在。由狭义相对论可知,质量并非不变,而是依赖于(事实上是等价于)能量含量。它也表明,牛顿的运动定律只能被视为对低速有效的极限定律;它确立了一条以真空中的光速为极限速度的新运动定律来取代牛顿定律。
广义相对论构成了场论纲领发展中的最后一步。从量上来说,它对牛顿的理论只做了很小的修改,但在质上却要深刻得多。惯性、引力以及物体和时钟的度规行为都被归结为场的性质,而这个场本身又被认为依赖于物体(推广了牛顿的引力定律,或如泊松所表述的那样,推广了对应于牛顿引力定律的场定律)。由此空间和时间虽然未被剥夺实在性,但却被剥夺了因果绝对性(所谓因果绝对性,是指产生影响但不受影响),为了能够表述当时已知的定律,牛顿不得不把这种绝对性归于空间和时间。广义的惯性定律接管了牛顿运动定律的角色。这一简短论述足以表明,牛顿理论的要素如何逐渐变成了克服上述三个缺点的广义相对论。在广义相对论的框架中,运动定律似乎能够从对应于牛顿力定律的场定律中推导出来。只有完全达到了这个目标,我们才能谈及纯粹的场论。
在一种更加形式的意义上,牛顿力学也为场论开辟了道路。将牛顿力学应用于连续分布的质量,必然会导向偏微分方程的发现和应用,而这些方程第一次提供了场论定律的语言。在这种形式方面,牛顿的微分定律观念构成了后来发展的第一个决定性步骤。
到目前为止,我们谈论的都是我们关于自然过程的观念的整个发展,它可以被视为对牛顿思想的一种系统发展。然而,正当对场论的完善还在如火如荼地进行的时候,热辐射、光谱、放射性等事实却揭示出整个思想体系适用性的限度。虽然该体系在许多情况下都已经取得巨大成就,但在我们今天看来,这种限度似乎仍然无法克服。许多物理学家断言(这有不少有力的论据),在这些事实面前,不仅微分定律,甚至是因果律本身(迄今为止它一直是所有自然科学最终的基本假定)也已经失效。甚至连建立一个能与物理事件明确对应的时空结构的可能性也被否定了。力学体系只能有分立的稳定能量值或稳定状态(正如经验几乎直接表明的那样),初看起来,这似乎很难从场论的微分方程中推导出来。基于一组考虑了共振条件的微分方程,具有场论特征的德布罗意–薛定谔方法的确推出了只存在分立的状态,这与经验事实惊人地一致,但它必须放弃质点的定域性和严格的因果律。牛顿自然观的两条最终前提,即因果律和微分定律,是否一定要明确放弃?我们现在还不得而知。
[120]牛顿逝世二百周年纪念演讲,发表于德文期刊《自然科学》(Die Naturwissenschaften, Vol. 15, 1927)。
[121]今天人人都知道,要由这种经验确定的轨道来发现这些定律需要何种辛劳。但很少有人认真思考过,开普勒使用了什么天才方法才根据从地球上观测的视轨道推导出了真轨道。——作者注
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。