数学之所以比其他一切科学享有特殊的声誉,一个原因在于,它的命题是绝对确定和不容置疑的,而其他所有科学的命题在某种程度上都是有争议的,而且总有被新发现的事实推翻的危险。不过,其他科学领域的研究者也没有必要羡慕数学家,因为数学命题只涉及我们想象中的对象,而不涉及实在对象。如果已就基本命题(公理)以及由此推导出其他命题的方法达成一致,那么得出一致的逻辑结论不足为奇。但数学之所以有这么高声誉,还因为数学赋予了精确自然科学以某种程度的确定性,如果没有数学,这些科学是达不到这种确定性的。
这里有一个谜激起了古往今来研究者的兴趣。数学既然是人类思想的产物,而不依赖于经验,它为何能够如此成功地符合实在对象呢?那么,是不是不要经验只靠思想,人的理性就能彻底了解实际事物的性质呢?
我认为,对这个问题的回答简要说来就是:数学命题只要涉及实在,就不是确定的;只要是确定的,就不涉及实在。在我看来,只有通过数学中所谓的“公理学”倾向,这种事态才能完全清晰起来。公理学取得的进步在于把“逻辑的–形式的”东西同事实的或直观的内容清楚地分离开来。根据公理学的说法,数学对象仅仅是“逻辑的–形式的”东西,而不涉及直观的或与“逻辑的–形式的”东西有关的其他内容。
我们暂且从这个观点来考察任何几何学公理,比如:过空间中的两点总有一条而且只有一条直线。如何在较早的意义和较为现代的意义上来解释这条公理呢?
较早的解释:人人都知道什么是直线,什么是点。这种知识究竟来自人的心灵能力还是来自经验,来自这两者的共同作用还是来自其他来源,无须由数学家来决定,他把这个问题留给了哲学家去探讨。上面那条公理以这种先于一切数学的知识为依据,它和其他一切公理一样是自明的,也就是说,它所表达的是这种先验知识的一部分。
较为现代的解释:几何学处理的对象由“直线”“点”等一些词来称呼。这些对象并不预设任何知识或直观,而只以公理(比如上面那条公理)的有效性为前提,这些公理需要在缺乏一切直观或经验内容的纯形式意义上来理解。这些公理是人类心灵的自由创造。其他一切几何学命题都是这些(从唯名论意义上来理解的)公理的逻辑推论。公理定义了几何学处理的对象。因此,石里克在他的一本认识论著作中非常恰当地将公理称为“隐定义”。
现代公理学所倡导的这种公理观清除了数学的一切外在要素,从而也驱散了以前笼罩着数学基础的神秘疑云。但这样一种经过删减的阐释也清楚地表明,数学本身对于直观想象的对象或实在对象不能作出任何断言。在公理几何学中,只能把“点”“直线”等词理解成没有内容的概念框架。至于是什么东西赋予了它们内容,则与数学无关。
但另一方面,一般的数学尤其是几何学之所以产生,肯定是为了了解实际物体的行为。“几何学”一词的原义“土地测量”已经证明了这一点,因为土地测量涉及某些自然物(即土地的部分、量线、量杆等)彼此之间排列的可能性。仅有公理几何学的概念体系显然无法对这种实际对象(我们将称之为“准刚体”)的行为作出任何断言。为了能够作出这种断言,几何学必须把实际的可经验对象与公理几何学空的概念框架协调起来,从而去掉其纯逻辑–形式特征。为了做到这一点,我们只需加上这样一个命题:刚体之间可能的排列关系就像三维欧几里得几何学中的形体一样。这样一来,欧几里得几何学的命题就包含了关于准刚体行为的断言。
这样补充的几何学显然是一门自然科学,我们甚至可以把它看成最古老的物理学分支。它的断言实质上基于经验归纳,而不仅仅基于逻辑推理。我们把这样补充的几何学称为“实用几何学”,并把它同“纯公理几何学”区分开来。宇宙的实用几何学究竟是不是欧几里得几何学,这个问题有着明确的意义,其答案只能由经验来提供。如果采用光沿直线传播这条经验定律,即光在实用几何学的意义上沿直线传播,那么物理学中的一切长度测量都属于这种意义上的实用几何学,测地学和天文学中的长度测量也是如此。
这种对几何学的看法对我有特殊的意义,因为没有它我就提不出相对论。也就是说没有它,以下考虑就不可能:在一个相对于惯性系转动的参照系中,由于洛伦兹收缩,刚体的排列定律不再符合欧几里得几何学的规则;于是,如果承认非惯性系也有同等地位,就必须放弃欧几里得几何学。如果没有上述解释,就一定不会采取通往广义协变方程的决定性步骤。如果拒绝承认欧几里得公理几何学的形体与实际的准刚体之间的关系,我们就很容易得出敏锐而深刻的思想家彭加勒所主张的观点:欧几里得几何学以其简单性胜过了所有其他可以设想的公理几何学。现在,由于仅凭公理几何学并不能对可经验的实在做出断言,而只有结合物理定律才能做到这一点,因此无论实在的本性如何,保留欧几里得几何学应当是可能的,而且也是合理的。因为一旦理论与经验之间出现矛盾,我们宁可改变物理定律,也不愿改变欧几里得的公理几何学。事实上,如果拒绝承认准刚体与几何学之间的关系,我们就难免会约定,应把欧几里得几何学当作最简单的几何学予以保留。
彭加勒等研究者为何拒不承认准刚体与几何形体之间如此明显的等价性呢?那是因为经过进一步考察可以发现,自然之中的实际固体并不是刚性的,因为它们的几何行为(即它们相对排列的各种可能性)依赖于温度、外力,等等。于是,几何学与物理实在之间原初的直接关系似乎遭到了破坏,我们不得不倾向于以下更一般的观点,这也是彭加勒观点的典型特征:几何学(G)并不断言实际物体的行为,只有几何学加上全部物理定律(P)才能做到这一点。如果用符号来表示,我们可以说:只有(G)+(P)才能得到实验验证。于是,(G)可以任意选取,(P)的某些部分也可以任意选取,所有这些定律都是约定。为了避免矛盾,需要注意的是如何选取(P)的其余部分,使得(G)与全部(P)合起来能够符合经验。根据这种理解,公理几何学和已经约定的那部分自然定律在认识论上似乎是等价的。
我认为,从永恒的观点来看,彭加勒是正确的。量杆的观念以及在相对论中与之协调的时钟的观念在现实世界中是找不到与之完全对应的东西的。同样明显的是,在物理学的概念大厦中,固体和时钟并非不可还原的要素,而是有着复合的结构,它们在理论物理学中不能扮演任何独立角色。但我相信,在现阶段的理论物理学中,这些概念仍要作为独立概念来使用,因为我们还不够了解原子结构的理论原理,使我们能从理论上由基本概念构造出固体和时钟。
此外,有人反驳说,自然之中没有真正的刚体,因此所讲的刚体性质并不适用于物理实在。初看起来,这种反驳似乎很深刻,但其实不然。因为我们不难精确地确定测量物体的物理状态,使之相对于其他测量物体的行为清晰到足以用它来代替“刚”体。关于刚体的陈述正是相对于这种测量物体而言的。
整个实用几何学都基于一条为经验所能及的原理,我们现在就来回想一下。假设在一个准刚体上标出两个记号,并把这样一对记号称为一个截段。我们设想有两个准刚体,在每一个上面都标出一个截段。如果一个截段的两个记号能与另一个截段的两个记号永远重合,那么就说这两个截段“彼此相等”。我们现在假定:
如果两个截段在某时某地相等,那么不论在何时何地都永远相等。
不仅欧几里得的实用几何学,而且它最近的推广即黎曼的实用几何学以及广义相对论,也都以这一假定为基础。我只讲一个实验根据来证明这一假定是正确的。光在真空中的传播为每一段局域时间都指定了一个截段,即相应的光程,反之亦然。因此,上述关于截段的假定在相对论中也必定适用于时钟的时间间隔。因此可以作如下表述:如果两个理想时钟在某时某地走得同样快慢(那时它们相互紧靠),那么无论何时何地,当它们再在同一地点进行比较时,它们都将走得同样快慢。如果这条定律对于自然时钟无效,那么同一种化学元素的各个原子的本征频率就不会像经验显示的那样完全一致。锐谱线的存在是对上述实用几何学原理的令人信服的实验证明。归根结底,这个理由使我们能够有意义地谈论四维空–时连续体的黎曼度规。
根据这里主张的观点,这个连续体的结构究竟是欧几里得的、黎曼的还是其他的,是一个必须由经验来回答的物理学问题,而不是一个为求方便而进行选择的约定问题。如果所考察的空–时区域越小,准刚体的排列定律就越接近于欧几里得几何形体的定律,那么黎曼几何学就是适用的。
这里提出的对几何学的物理解释虽然在直接应用于亚分子量级的空间时失败了,但即使在那些关于基本粒子构成的问题中,它也仍然有部分意义。因为即使是对构成物质的带电基本粒子进行描述,也仍然可以尝试把物理意义赋予那些原本为了描述比分子大的物体的几何行为而进行物理定义的场的概念。要求黎曼几何的基本概念在其物理定义的范围之外仍然有物理实在性,这种尝试是否正当,只有靠成功与否来判断。也许结果会表明,这种外推并不比把温度概念外推到分子量级的物体部分上去更恰当。
把实用几何学的概念扩展到宇宙量级的空间上去似乎不太成问题。也许有人会反驳说,由固体杆组成的结构的空间范围越大,它距离刚性理想就越远。但这种反驳大概很难有什么根本意义。在我看来,宇宙在空间上是否有限,是完全有意义的实用几何学问题。我甚至认为,天文学可能不用多久就能回答这个问题。让我们回忆一下广义相对论在这方面的教导。它提供了两种可能性:
1.宇宙在空间上是无限的。这只有当宇宙中集中在星体里的物质的平均空间密度等于零时才有可能,也就是说,只有让所考察的空间变得越来越大,使得星体的总质量与散布着星体的空间体积之比无限地趋近于零时,才有可能。
2.宇宙在空间上是有限的。如果宇宙空间中有重物质的平均密度不等于零,则这种可能性必然成立。平均密度越小,宇宙的体积就越大。
必须指出,支持有限宇宙假说有一个理论根据。广义相对论告诉我们,物体近旁的有重物质越多,它的惯性就越大。因此,将一个物体总的惯性归结为它与宇宙中其他物体的相互作用似乎是很自然的,事实上,自牛顿以来,重力已被完全归结为物体之间的相互作用。由广义相对论的方程可以推出,只有当宇宙在空间上有限时,才能把惯性完全归结为质量之间的相互作用(如马赫所要求的)。(www.xing528.com)
许多物理学家和天文学家并不看好这种论证。归根结底,只有经验才能决定这两种可能性中哪一种在自然界中得到了实现。经验如何能够提供答案呢?初看起来,似乎可以通过可观察的那部分宇宙来测定物质的平均密度。这种希望是不现实的。可见星体的分布是极不均匀的,没有理由认为,宇宙中星体物质的平均密度等于比如说银河系中的平均密度。无论如何,不论所考察的空间有多大,都不能确定在这个空间之外没有更多的星体。因此,估算平均密度似乎是不可能的。
但还有一条道路在我看来是更加可行的,尽管它也存在着很大困难。如果研究广义相对论的可由经验验证的推论与牛顿理论的推论之间的偏差,那么我们首先会在引力物质附近发现偏差,这已在水星的例子中得到了确证。但如果宇宙在空间上是有限的,那么就会与牛顿理论有第二个偏差,用牛顿理论的语言可以这样表述:引力场似乎不仅由有重物质产生,还由均匀分布于空间中的带负号的质量密度产生。由于这个虚设的质量密度必定极小,只有在非常巨大的引力系统中才觉察得到。
假定已知星体在银河系中的统计分布和质量,然后根据牛顿定律,就可以计算出引力场,以及为使银河系在其各个星体的相互吸引下不会坍塌而是保持其实际大小,这些星体所必须具有的平均速度。如果星体实际的平均速度——它们能被测量出来——小于计算出来的速度,我们就能证明,在远距离处的实际吸引力小于根据牛顿定律计算出来的结果。由这样一个偏差就可以间接证明宇宙是有限的,甚至可以估计它的空间大小。
我们能否想象一个有限但无界的三维宇宙呢?
对于这个问题,通常的回答是“不能”,但这是错误的。接下来我要向大家说明,回答应该是“能”。我们不难用一种心灵图像来说明有限宇宙的理论,经过一些练习,我们很快就能习惯。
首先要考察一下认识论的性质。几何–物理理论本身是无法直接描绘的,它仅仅是一组概念。但这些概念能将心灵中各种实际的或想象的感觉经验联系起来。因此,“想象”一种理论,就意味着想起理论为之提供示意排列的大量感觉经验。就目前的例子而言,我们必须问,如何描述固体相互排列(接触)的行为,才能符合有限宇宙的理论。对此我要说的其实并没有什么新东西,但向我提出的无数问题都表明,对这些事情有兴趣的人的好奇心尚未完全得到满足。因此,对于我所要讲的众所周知的内容,还望内行谅解。
当我们说空间是无限的时候,我们是想表达什么呢?这仅仅是说,我们可以一个挨一个地摆放任意数量的同样大小的物体,而永远填不满空间。假定我们有许许多多同样大小的方盒。按照欧几里得几何学,我们可以把它们上下、左右、前后地堆放起来,以填满空间的任意大小的部分。但这样的构造永远不会结束。无论我们添加多少个方盒,都有地方再放。这就是我们说空间是无限的意思。更好的说法是,假定这些物体的排列定律是由欧几里得几何学所规定的,那么空间对于准刚体就是无限的。
平面是无限连续体的另一个例子。我们可以在一个平面上摆放许多方卡片,使任一张卡片的每一边都是另一张与之相邻的卡片的边。这种构造永无止境。我们可以一直摆放卡片,只要其排列定律符合欧几里得几何学的平面图形的排列定律。因此,对于这些方卡片来说,平面是无限的。相应地可以说,平面是二维的无限连续体,空间是三维的无限连续体。至于这里所说的维数是什么意思,我想大家都是知道的。
现在我们举一个有限但无边界的二维连续体的例子。我们设想有一个大球的表面和一些大小相同的小圆纸片。将一张纸片放在球面上的任何地方。如果在球面上随意移动纸片,那么在此过程中是碰不到边界的,因此我们说,球面是一个无界的连续体。同时,球面又是一个有限的连续体,因为如果将纸片贴在球上,使各个纸片不互相重叠,则球面最后会被贴满,无法再多贴一张纸片。这正意味着球面对于纸片来说是有限的。此外,球面还是一个二维的非欧几里得连续体,也就是说,球面上的刚性图形所依据的排列定律并不符合欧几里得平面的那些定律。这可以用以下方式来说明。用六张纸片围住一张纸片,其中每一张再用六张纸片围住,这样继续下去。如果在平面上进行这种构造,则这个过程没有尽头,除了最外圈,每一张纸片都与六张纸片相接触。而在球面上,这种构造起初似乎也有成功的希望,纸片半径相对于球的半径越小,这种希望似乎就越大。但随着构造的进行,情况变得越来越明显,不可能没有间断地按照上述方式将纸片排列下去。然而按照欧几里得的平面几何学,这种构造应当是可能的。这样一来,那些无法离开球面、甚至也无法从球面窥入三维空间的生物,只要用纸片来做实验,就能发现自己的二维“空间”不是欧几里得空间,而是球面空间。
根据相对论的最新研究成果,我们的三维空间或许也近似于球面空间。也就是说在这个空间里,刚体的排列定律不是由欧几里得几何学规定的,而是近似地由球面几何规定,只要我们考察的那部分空间足够大。到了这里,读者可能会难以接受。“没有人能想象这种东西,”他会愤怒地喊道,“它可以这样说,但不能这样想。我完全可以想象一个球面,但想不出三维的与球面类似的东西。”
我们必须尝试克服这种心理障碍。耐心的读者会发现,做到这一点并非特别困难。为此,我们再来看看二维球面的几何学。在附图中,设K是球面,它在S处与平面E相接触。为方便起见,这里把平面E画成一个有边界的表面。设L是球面上的一个圆纸片,想象球面上与S径向相对的点N有一个发光点,它在平面E上投下纸片L的影子L'。球上每一点在平面上都有影子。球K上的纸片如果移动,则平面E上的影子L'也会移动。当纸片L移动到S时,它几乎与影子完全重合。如果纸片L在球面上从S向外移动,则平面上纸片的影子L'也会从S向外移动,并且变得越来越大。随着纸片L接近发光点N,影子将移向无穷远的地方,变得无限大。
现在我们提出这样一个问题:纸片在平面E上的影子L'的排列定律是怎样的呢?显然,它们与纸片L在球面上的排列定律是完全一样的。因为对于K的每一个图形,E上都有一个对应的影子图形。如果K上的两张纸片彼此接触,则它们在E上的影子也彼此接触。平面上的影子几何学与球面上的纸片几何学完全一致。如果把纸片影子称为刚性图形,那么对于这些刚性图形,球面几何同样适用于平面E。特别是,平面对于纸片影子是有限的,因为只有有限个数的纸片影子可以在平面上占到位置。
这里,有人会说:“那是胡说。纸片影子不是刚性图形。只要拿一根尺子在平面E上移动,就能使我们确信,当影子在平面上从S移向无穷远时,影子的大小一直在增长。”但如果这根尺子也和纸片影子L'一样可以在平面上伸缩,那又将怎样呢?那样一来,就不可能表明影子离开S时大小会增长,这种断言将不再有任何意义。事实上,关于纸片影子只能作这样一个客观断言:纸片影子的相互关系与欧几里得几何学意义上的球面上的刚性纸片完全相同。
我们必须谨记,只要无法把纸片影子与那些能在平面E上运动的欧几里得刚体做比较,关于纸片影子增长(随着它们从S移向无穷远处)的陈述本身就没有客观意义。无论认为S点在平面上还是在球面上,都不会影响影子L'的排列定律。
将球面几何在平面上表示,对我们来说很重要,因为很容易把它转换到三维的情况。
想象空间中有一个点和很多小球L',所有这些小球都能彼此重合。但这些球并不是欧几里得几何学意义上的刚性球,当它们从S移向无穷远处时,其半径会增长(在欧几里得几何学的意义上),这种增长所遵循的定律与平面上纸片影子L'的半径增长定律完全一样。
在对我们这些L'球的几何行为获得一幅生动的心理图像之后,让我们假定这个空间里根本不存在欧几里得几何学意义上的刚体,而只存在具有这种L'球的行为的形体。于是,我们将得到一幅关于三维球面空间的清晰图像,或者说关于三维球面几何的清晰图像。这里必须把我们这些球称为“刚性”球。当它们离开S时,其大小的增长无法用量杆量度出来,就像平面E上纸片影子的情况一样,因为量度标准的行为与这些球是相同的。空间是均匀的,也就是说,每一点的附近可以有同样的球的排列。[117]我们的空间是有限的,因为由于球的“增长”,只有有限个球能在空间中占到位置。
于是,借助于欧几里得几何学所赋予的思考和想象,我们获得了一幅关于球面几何的心理图像。通过特殊的想象构造,不难使这些观念更富深度和活力。同样,也不难描述所谓椭圆几何的情形。我今天唯一的目的就是表明,人的想象能力对于非欧几里得几何学绝非无能为力。
[116]1921年1月27日在普鲁士科学院的演讲。
[117]如果再次回到球面上圆纸片的情况,那么这一点无须计算就能理解——不过只限于二维情形。——作者注
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。