【知识梳理】
在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”;二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管)约束模型”.
2.绳、杆模型涉及的临界问题
3.竖直面内圆周运动类问题的解题技巧
(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同.
(3)研究状态:通常情况下,竖直平面内的圆周运动只涉及最高点和最低点的运动情况.
(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程,F合=F向.
(5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程.
【例题与变式】
例题1.如图所示,一质量为m=0.5kg的小球,用长为0.4m的轻绳拴着在竖直平面内做圆周运动.g取10m/s2,求:
(1)小球要做完整的圆周运动,在最高点的速度至少为多大?
(2)当小球在最高点的速度为4m/s时,轻绳拉力多大?
(3)若轻绳能承受的最大张力为45N,小球的速度不能超过多大?
变式1.如图甲所示,小球用不可伸长的轻绳连接后绕固定点O在竖直面内做圆周运动,小球经过最高点时的速度大小为v,此时绳子的拉力大小为FT,拉力FT与速度的平方v2的关系如图乙所示,图像中的数据a和b包括重力加速度g都为已知量,以下说法正确的是( ).
A.数据a与小球的质量有关
B.数据b与圆周轨道半径有关
D.利用数据a、b和g能够求出小球的质量和圆周轨道半径
例题2.如图所示,一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球在竖直平面内做半径为R的圆周运动,以下说法正确的是( ).
A.小球过最高点时,杆所受的弹力不能等于零
B.小球过最高点时,速度至少为gR
C.小球过最高点时,杆对球的作用力可以与球所受重力方向相反,此时重力一定不小于杆对球的作用力
D.小球过最高点时,杆对球的作用力一定与小球所受重力方向相反(www.xing528.com)
变式2.如图所示,轻杆长3L,在杆两端分别固定质量均为m的球A和B,光滑水平转轴穿过杆上距球A为L处的O点,外界给系统一定能量后,杆和球在竖直平面内转动,球B运动到最高点时,杆对球B恰好无作用力.忽略空气阻力.则球B在最高点时( ).
A.球B的速度为零 B.球A的速度大小为2gL
C.水平转轴对杆的作用力为1.5mg D.水平转轴对杆的作用力为2.5mg
【高考对接】
1.(2016·全国卷Ⅲ)(多选)如图所示,一固定容器的内壁是半径为R的半球面;在半球面水平直径的一端有一质量为m的质点P.它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W.重力加速度大小为g.设质点P在最低点时,向心加速度的大小为a,容器对它的支持力大小为N,则( ).
2.(2014·新课标全国卷Ⅱ)如图所示,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g.当小环滑到大环的最低点时,大环对轻杆拉力的大小为( ).
A.Mg-5mg B.Mg+mg
C.Mg+5mg D.Mg+10mg
练 习
1.明代出版的《天工开物》一书中就有牛力齿轮翻车的图画(如图),记录了我们祖先的劳动智慧.若A、B、C三齿轮半径的大小关系如图所示,则( ).
A.齿轮A的角速度比C的大
B.齿轮A与B角速度大小相等
C.齿轮B与C边缘的线速度大小相等
D.齿轮A边缘的线速度比C边缘的大
2.如图所示,一内壁光滑,质量为m、半径为r的环形细圆管,用硬杆竖直固定在天花板上.有一质量为m的小球(可看作质点)在圆管中运动.小球以速率v0经过圆管最低点时,杆对圆管的作用力大小为( ).
3.用一根细线一端系一可视为质点的小球,另一端固定在一光滑锥顶上.如图所示,设小球在水平面内做匀速圆周运动的角速度为ω.线的张力为FT,则FT随ω2变化的图像是下图中的( ).
4.(多选)摩擦传动是传动装置中的一个重要模型,如图所示的两个水平放置的轮盘靠摩擦力传动,其中O、O′分别为两轮盘的轴心,已知两个轮盘的半径之比r甲∶r乙=3∶1,且在正常工作时两轮盘不打滑.今在两轮盘上分别放置两个同种材料制成的滑块A、B,两滑块与轮盘间的动摩擦因数相同,两滑块距离轴心O、O′的间距RA=2RB.若轮盘乙由静止开始缓慢地转动起来,且转速逐渐增加,则下列叙述正确的是( ).
A.滑块A和B在与轮盘相对静止时,角速度之比为ω甲∶ω乙=1∶3
B.滑块A和B在与轮盘相对静止时,向心加速度的比值为aA∶aB=2∶9
C.转速增加后,滑块B先发生滑动
D.转速增加后,两滑块一起发生滑动
5.(多选)“太极球”是近年来在广大市民中较流行的一种健身器材.做该项运动时,健身者半马步站立,手持太极球拍,拍上放一橡胶“太极球”,健身者舞动球拍时,球却不会掉落地上.现将“太极球”简化成如图所示的平板和小球,熟练的健身者让球在竖直面内始终不脱离板而做匀速圆周运动,且在运动到图中的A、B、C、D位置时球与板间无相对运动趋势.A为圆周的最高点,C为最低点,B、D与圆心O等高且在B、D处板与水平面夹角为θ.设球的质量为m,圆周的半径为R,重力加速度为g,不计拍的重力,若运动到最高点时拍与小球之间作用力恰为mg,则( ).
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。