首页 理论教育 八种类型的小学数学思维训练方法

八种类型的小学数学思维训练方法

时间:2023-07-23 理论教育 版权反馈
【摘要】:④10 与什么数的和是16?学上答:3×5=15,或5×3=15.通过这样的速问速答的训练,发现学生思维越来越活跃,越来越灵活,越来越准确.类比型.这是一种对并列事物相似性的异同实质进行识别的思维形式.这项训练可以培养学生思维的准确性.如:① 金湖粮店运来大米6 吨,比运来的面粉少1/4 吨,运来面粉多少吨?

八种类型的小学数学思维训练方法

有人说“数学是思维的体操”,通过学习数学,不仅可以训练人的思维,还可以增强分析问题和解决问题的能力;因而在数学中揭示数学思维过程,培养学生的思维能力,使学生从小善于独立思考,具有创新意识,是数学教学中极为重要的任务.

(1)求异型.

这是在同一来源中产生各种各样的、为数众多的输出的分析性的思维形式,而教师可以引导学生从不同的方面探索问题的多种答案.

可以启发学生用不同的叙述方式表述算式.如:①16 减去10 等于几?②16 减去10 还剩多少?③16 与10 的差是多少?④10 与什么数的和是16?⑤16 比10 多多少?⑥10 比16 少多少?⑦16 减去什么数等于10?⑧10 加上什么数等于16?

这样,既使学生透彻理解了数量关系,又训练了口头表达能力,更重要的是锻炼了学生的思维能力.

(2)求同型.

这是一种进行综合、概括的思维形式.

如:① 甲乙两人接到加工54 只零件任务,甲每天加工10 只,乙每天加工8 只,几天后完成任务?(工作总量具体化)

② 一件工程,甲独做10 天完成,乙独做15 天完成,两人合作几天完成?(工作总量单位1)

像这些形异质同的问题,要引导学生自己总结出:工作总量÷工作效率=工作时间.只有这样,学生才能以不变应万变,解一题会多题,可以起到减轻学生负担的作用.

(3)递进型.

这是一种属于逻辑判断、推理的思维形式.

例如,教师在讲授“已知一个数的百分之几是多少,求这个数”这类题时,引导学生用已掌握的“已知一个数的几倍是多少,求这个数”的解题规律去进行逻辑推理,让学生自己发现新出现的百分数应用题的解题规律.教师不要越俎代庖,否则吃力不讨好,反而妨碍了学生思维能力的提高.

(4)逆反型.

这是一种敢于和善于突破习惯性思维束缚的反向思维形式.

在数学教学中,可供训练的材料比比皆是,如加减、乘除、通分约分、正反比例等,问题是教师如何善于运用它.如教验算时,16-10=6,学生习惯地用16-6=10 来验算,这时教师可启发学生用6+10=16 来验算.经过训练,学生便可知道用加法验算减法、用减法验算加法、用乘法验算除法、用除法验算乘法了.(www.xing528.com)

(5)激化型.

这是一种跳跃性、活泼性、转移性很强的思维形式.

教师可通过速问速答来训练学生.如问:3 个5 相加是多少?学生答:5+5+5=15 或5×3=15.教师又问:3 个5 相乘是多少?学生答:5×5×5=125.紧接着问:3 与5 相乘是多少?学上答:3×5=15,或5×3=15.

通过这样的速问速答的训练,发现学生思维越来越活跃,越来越灵活,越来越准确.

(6)类比型.

这是一种对并列事物相似性的异同实质进行识别的思维形式.这项训练可以培养学生思维的准确性.

如:① 金湖粮店运来大米6 吨,比运来的面粉少1/4 吨,运来面粉多少吨?(1/4 是具体的数量)

② 金湖粮店运来大米6 吨,比运来的面粉少1/4,运来面粉多少吨?(1/4 是分率)

以上两题,虽然相似,实质不同,一字之差,解法全异,可以点拨学生自己辨析.通过训练,学生今后碰到类似的问题便会仔细推敲,这样就大大地提高了思维的准确性.

(7)转化型.

这是解决问题遇到障碍受阻时把问题由一种形式转换成另一种形式,使问题变得更简单、更清楚,以利解决的思维形式.在教学中,通过该项训练,可以大幅度地提高学生解题能力.

(8)系统型.

这是把事物或问题作为一个系统从不同的层次或不同的角度去考虑的高级整体思维形式.

在高段除结合综合应用题以外,还可编制许多智力训练题来培养学生系统思维能力.如:1 2 3 4 5 6 7 8 9 在不改变顺序前提下(即可以将几个相邻的数合在一起成为一个数,但不可以颠倒),在它们之间画加减号,使运算结果等于100.像这道题就牵涉到系统思维的训练.教师可引导学生把10 个数看成一个系统,从不同的层次去考虑.第一层次:找100 的最接近数,即89 比100 仅少11.第二个层次:找11 的最接近数,很明显是前面的12.第三个层次:解决多l 的问题.整个程序如下:12+3+4+5-6-7+89=100.经过像这样的训练,学生就会触类旁通,碰到难题就能产生新的思路和设想.

以上思维训练的八种类型,在使用时,可因人而异,因时而异.教师不必拘泥于每一节课都面面俱到,可以因教学对象、教学内容的不同而灵活运用.

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈