首页 理论教育 常见的激光光谱分析及应用

常见的激光光谱分析及应用

时间:2023-07-17 理论教育 版权反馈
【摘要】:③使用频率可连续调谐的激光器作光源,不用分光仪器,直接记录吸收光谱。

常见的激光光谱分析及应用

4.4.3.1 吸收光谱

激光用于吸收光谱,可取代普通光源,省去单色器或分光装置。激光的强度高,足以抑制检测器的噪声干扰,激光的准直性有利于采用往复式光路设计,以增加光束通过样品池的次数。所有这些特点均可提高光谱仪的检测灵敏度。除去通过测量光束经过样品池后的衰减率的方法对样品中待测成分进行分析外,由于激光与基质作用后产生的热效应或电离效应也较易检测到,以此为基础发展而成的光声光谱分析技术和激光诱导荧光光谱分析技术已获得应用。利用激光诱导荧光、光致电离和分子束光谱技术的配合,已能有选择地检测出单个原子的存在。

处于基态和低激发态的原子或分子吸收具有连续分布的某些波长的光而跃迁到各激发态,形成了按波长排列的暗线或暗带组成的光谱。

吸收光谱是温度很高的光源发出来的白光,通过温度较低的蒸气或气体后产生的,如果让高温光源发出的白光,通过温度较低的钠的蒸气就能生成钠的吸收光谱。光谱背景是明亮的连续光谱。在钠的标识谱线的位置上出现了暗线。通过大量实验观察总结,每一种元素的吸收光谱里暗线的位置与其明线光谱的位置互相重合。即每种元素所发射的光频率与其所吸收的光频率相同。

纯白光为一连续的从红色到紫色的光谱,但当白光穿过一个有色宝石,一定颜色或波长可被宝石所吸收,这导致该白光光谱中有一处或几处间断,这些间断以暗线或暗带形式出现。许多宝石显示出可见光谱中吸收带或线的特征样式,其完整的样式即“吸收光谱”。

高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生吸收光谱。例如,让弧光灯发出的白光通过温度较低的钠气(在酒精灯的灯芯上放一些食盐,食盐受热分解就会产生钠气),然后用分光镜来观察,就会看到在连续光谱的背景中有两条挨得很近的暗线,就是钠原子的吸收光谱。各种原子的吸收光谱中的每一条暗线都与该原子的发射光谱中的一条明线相对应。表明低温气体原子吸收的光,就是这种原子在高温时发出的光。因此,吸收光谱中的暗线,就是原子的特征谱线。

吸收光谱广泛应用于材料的成分分析和结构分析,以及各种科学研究工作。观察吸收光谱的方法有以下几种:

①使用具有连续光谱的光源,如白炽灯连续谱红外光源。光通过样品后经过分光仪器被记录下来,在连续的白光本底上显示暗的吸收光谱。

②使上述光源发出的光先通过分光仪器,成为准单色光。调节分光仪器,使光的频率连续扫描,通过样品并被记录下来,得到吸收光谱的线形。

③使用频率可连续调谐的激光器作光源,不用分光仪器,直接记录吸收光谱。激光技术的发展给吸收光谱方法的研究以巨大的推动,现已具备了为获得极高分辨率、极高灵敏度等所需要的激光吸收光谱技术。

4.4.3.2 荧光光谱

高强度激光能够使吸收物种中相当数量的分子提升到激发量子态。因此极大地提高了荧光光谱的灵敏度。以激光为光源的荧光光谱适用于超低浓度样品的检测,例如用氮分子激光泵的可调染料激光器对荧光素钠的单脉冲检测限已达到10-10mol/L,比用物体经过较短波长的光照,把能量储存起来,然后缓慢放出较长波长的光,放出的这种光就叫荧光。如果把荧光的能量—波长关系图做出来,那么这个关系图就是荧光光谱。荧光光谱当然要靠光谱检测才能获得。

荧光光谱。高强度激光能够使吸收物质中相当数量的分子提升到激发量子态。(www.xing528.com)

荧光光谱包括激发谱和发射谱两种。激发谱是荧光物质在不同波长的激发光作用下测得的某一波长处的荧光强度的变化情况,也就是不同波长的激发光的相对效率;发射谱则是某一固定波长的激发光作用下荧光强度在不同波长处的分布情况,也就是荧光中不同波长的光成分的相对强度。普通光源得到的最高灵敏度提高了一个数量级

4.4.3.3 拉曼光谱

激光使拉曼光谱获得了新生,因为激光的高强度极大地提高了包含双光子过程的拉曼光谱的灵敏度、分辨率和实用性。为了进一步提高拉曼散射的强度,最近又研究出两种新技术,即共振拉曼光谱法和相关反斯托克斯拉曼光谱法(CARS),使灵敏度得到更大的提高,但尚未成为常规的分析方法。

光照射到物质上发生弹性散射和非弹性散射。弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分,统称为拉曼效应。拉曼效应是光子与光学支声子相互作用的结果。

拉曼光谱原理 拉曼效应起源于分子振动(和点阵振动)与转动,因此从拉曼光谱中可以得到分子振动能级(点阵振动能级)与转动能级结构的知识。用虚的上能级概念可以说明了拉曼效应:

设散射物分子原来处于基电子态,当受到入射光照射时,激发光与此分子的作用引起的极化可以看作为虚的吸收,表述为电子跃迁到虚态(Virtual state),虚能级上的电子立即跃迁到下能级而发光,即为散射光。设仍回到初始的电子态,因而散射光中既有与入射光频率相同的谱线,也有与入射光频率不同的谱线,前者称为瑞利线,后者称为拉曼线。在拉曼线中,又把频率小于入射光频率的谱线称为斯托克斯线,而把频率大于入射光频率的谱线称为反斯托克斯线。

附加频率值与振动能级有关的称作大拉曼位移,与同一振动能级内的转动能级有关的称作小拉曼位移。

拉曼散射光谱具有以下明显的特征。

①拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关;

②在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧,这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。

③一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈