数学是研究现实世界的空间形式和数量关系的科学,数学分析、数理统计和数理逻辑是生命科学研究的重要工具和方法。综观生命科学发展的历史,数学对生命科学研究和发展的重要作用是不言而喻的。
早在古希腊的科学发展时期,柏拉图曾依据动物的栖息环境,使用数学的二歧式分枝法对其进行分类。后来,他的学生亚里士多德认为,要确定动物之间的亲缘关系,研究动物生活的环境、结构、习性、运动形式和生殖方式,就会发现“它的生成和组合”总是具有“一种美妙的形式”。为此,他依据动物血液是否红色,将其分为无脊椎动物和脊椎动物;再依据生殖方式的不同,对520多种动物进行分类,构建了一个生物梯级略图,并使用属(genus)和种(species)作为两个分类术语(起源于希腊语“形式”一词)。此后,亚里士多德的继承者和崇拜者们在研究代谢问题的实验中,还试图运用定量方法分析喂食—体重—排泄物之间的数量关系。上述事实表明,早在生物学发展的准备和奠基阶段,数学的思维方式和方法就已经应用到生物研究中,并对生物学的发展起着推动作用。
事实上,数学在生命科学各个重大发展时期都起着促进作用。例如,哈维的《心血循环论》是经典生物学时期(16世纪初~19世纪中后)的典型代表,这篇论文的突出研究课题是“心脏的每次搏动向全身输送多少血液”,而且他首创把实验与定量方法结合起来应用于血液循环研究,并根据他用放大镜进行的观察推测全身有一个“不能直接观察的血管交织网”。显然,实验与定量方法相结合应用于生物学研究,是生物学发展过程中的一个显著进步,这种研究方法在当时的物理学领域也应用得很少。孟德尔被认为是实验生物学时期(19世纪中后至20世纪初)的先驱者,他使用数理统计方法对豌豆杂交实验的数据进行分析,揭示出相对性状分离和不同性状自由组合的遗传实质。孟德尔的杰出贡献,一方面为孟德尔定律是基因传递的基本规律,另一方面他是第一位将概率原理用于预测遗传杂交实验结果的科学家,他所创立的《植物杂交试验》原理至今仍广泛地应用于遗传学研究。1953年,沃森(Watson)和克里克(Crick)首次提出DNA分子双螺旋结构模型,奠定了现代分子生物学发展的基础,开辟了生命科学的新纪元。这个双螺旋结构以其简洁的三维空间构想,成为当代生物学和社会发展的现代象征。显然,建立模型的数学思维方式和方法,是促使沃森和克里克取得研究成功的重要原因之一。
同样,生物科学发展的需要对数学研究也有巨大的推进作用。例如,生态学的研究方法可分为:野外研究、实验研究和数学模型研究三大类。在生态学发展的历史中,野外研究是最先产生的基本方法,野外进行数量调查的特殊性促进了数量统计学的发展,种群生物统计学、数学生态学及生物数学分类法则应运而生。数学模型研究是利用数学手段,描述种群数量动态机制以及生态系统内的能量流动和物质循环规律,并进行模拟和预测种群行为和数量动态,或者估算出生态系统的生产力指标。例如,模拟一次传染病在种群中大流行的后果,或模拟一种有毒污染物对生态系统的影响等,都要求进行精确的数学处理和定量预测,这对数理统计及动态分析研究提出一系列新的课题。(www.xing528.com)
大家知道,信息、材料和能源被誉为现代科学技术发展的3大支柱,生物学与信息科学和技术科学也有十分密切联系。
信息科学是以信息论为基础,与电子学、计算机和自动化技术、数学、生物学、物理学和化学等学科相联系而发展起来的一门新兴的科学,其任务是研究各种信息的性质,受控机制,生物和人类对相关信息的获取、转换、传输、处理、利用和控制的一般规律,以及设计和制作各种信息器械,以便将人脑从自然力的束缚下解放出来,提高人类认识自然和保持与自然和谐发展的能力。信息技术的发展突飞猛进。从20世纪60年代至今,电子信息技术在各个领域中得到广泛地应用,并已深入千家万户,关联到每个人的生活。与此同时,激光信息技术得到迅速发展,已经对电子信息技术发挥了重要的补充作用。从20世纪70年代开始的生物信息技术,已经在实验室里研制出生物计算机模型。生物计算机亦称DNA计算机,它的工作原理是以瞬间发生的化学反应为基础,利用酶的催化作用将反应过程进行分子编码,当信息在特制的生物芯片中沿着蛋白质分子链传递时,会引起分子链中单键与双键结构顺序的改变,从而对问题以新的DNA编码形式加以解答。生物计算机一旦研究成功,必将推动计算机技术向着智能化方向发展。
生物科学成为当今世界自然科学领域的领先学科有两个主要原因:一是从20世纪50年代以来,分子生物学取得的一系列成就,使生物学在自然科学中的地位发生变化;二是生物技术的发展为人类创造了巨大财富。一般认为,现代生物技术通常包括基因工程、细胞工程、发酵工程、蛋白质及其酶工程。其中,以克隆和DNA重组为核心技术的基因工程发展得最快,并带动了细胞工程、发酵工程、蛋白质工程的发展。此外,基因诊断与治疗技术、动物克隆技术、生物芯片技术、生物材料技术、生物能源技术、生物净化技术等都属于现代生物技术的范畴。现代生物技术实际上是一门综合技术,与生物技术相关联的学科有:分子生物学、细胞生物学、微生物学、生物化学、遗传学、化学工程学、医药学等。作为现代生物技术领域,它可分为:农业生物技术、医药生物技术、环境生物技术和海洋生物技术等。科学界普遍认识到,生物技术将是21世纪经济发展的新动力,它将在农业、养殖业、能源、治理环境污染、纤维和包装材料、医药工业等领域形成巨大的产业,将为人类带来不可估量的利益。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。