采用直流伺服电动机或交流伺服电动机作为驱动部件,可以采用内装于电动机内的脉冲编码器、无刷旋转变压器或测速发电机作为位置/速度检测器件来构成半闭环位置控制系统,也可以采用直接安装在工作台的光栅或感应同步器作为位置检测器件,来构成高精度的全闭环位置控制系统。
如果把直流电动机结构进行“里翻外”的处理,即把电枢绕组装在定子处,转子为永磁部分,并以转子轴上的编码器测出磁极位置控制电子开关进行电子换相,这就构成了永磁无刷直流电动机。这种交流伺服电动机具有良好的伺服性能,从20世纪80年代开始,逐渐应用在数控系统的进给驱动装置上。交流伺服系统采用交流伺服电动机作为驱动器件,可以和直流伺服电动机一样构成高精度、高性能的半闭环或全闭环控制系统,由于交流伺服电动机内是无刷结构,几乎不需维修,体积相对较小,有利于转速和功率的提高。目前交流伺服系统已在很大范围内取代了直流伺服系统。
在当代数控系统中,伺服技术取得的突破可以归结为:交流伺服电动机取代直流伺服电动机、数字控制取代模拟控制,或者把它称为软件控制取代硬件控制。这两种突破的结果产生了交流数字驱动系统,应用在数控机床的伺服进给和主轴装置上。由于电力电子技术及控制理论、微处理器等微电子技术的快速发展,软件运算及处理能力的提高,采用高速微处理器和专用数字信号处理器(Digital Signal Processor,DSP)的全数字化交流伺服系统出现后,使系统的计算速度大大提高,采样时间大大减少。原来的硬件伺服控制变为软件伺服控制,一些现代控制理论中的先进算法得到实现,进而大大提高了伺服系统的性能,例如DSP-U10/U100网络式数控系统的伺服控制环就是一种高性能的伺服控制网,它对进行自律控制的各个伺服装置和部件实现了分散配置和网络连接,进一步发挥了它对机床的控制能力和通信速度。这些技术的突破,使伺服系统性能得以改善、可靠性提高、调试方便、柔性增强,大大推动了高精度高速加工技术的发展。
采用状态观察器和卡尔曼滤波器可以进行电动机参数的在线辨识,采用滑模变结构控制可增强电动机控制系统的鲁棒性。如能将各种智能控制理论有机地结合起来,必将开创交流伺服控制的新天地。如模糊控制和神经元网络控制都不需要精确的对象模型和参数,使系统具有很强的鲁棒性。(www.xing528.com)
传感器检测技术的发展也极大地提高了交流电动机调速系统的动态响应性能和定位精度。普遍采用的霍尔传感器具有小于1μs的响应时间。交流电动机调速系统一般选用无刷旋转变压器、混合型的光电编码器和绝对值编码器作为位置、速度传感器。随着它们的转速、分辨率的不断提高,系统的动态响应、调速范围以及低速性能也相应提高。传统的具有A、B两相信号的编码器,由于它不能兼顾分辨率和高速度,且信号线太多,从而影响了高精度、高速度的伺服系统的实现。而新型的编码器则克服了上述缺点,如日本FANUC公司生产的脉冲编码器(绝对型),由于它将来自正余弦信号的角度转化成数字量,使它具有4000r/min的高速以及高达1000000脉冲/r或65536脉冲/r的分辨率。另外,伺服电动机本身也在向高速方向发展,与上述高速编码器配合实现了60m/min甚至100m/min的快速进给和1g的加速度。而在电动机磁路设计上也做了改进,使电动机旋转更加平滑,再配合高速数字伺服软件,可使电动机即使在小于1μm转动时也显得平滑而无爬行。以IGBT(绝缘栅双极型晶体管)和IPM(智能功率模块)等新型电力电子器件为基础的新一代高载波、低噪声变频器的开发,以及新的控制软件的引入,把变频调速引入了一个全新的领域,使原来仅用于开环控制的变频器演变成了既能用于开环控制,也能用于闭环控制的“通用型驱动器”。以英国CT公司的Unidrive产品和德国AMK公司的AMKASYN产品为代表,使变频器登上了新的舞台。下面以CT公司的Unidrive产品为例,进行简单的介绍。
CT公司在1996年推出了通用型驱动器系列产品。它的控制板主要由Intel 80166 CPU、快闪存储器以及3片CT公司设计的专用芯片组成,硬件高度集成化,控制板芯片数量仅为当前市场上通用变频器的1/4。它按功率可分成5个等级,其中等级1(输出功率为0.75~4kW)为基本单元,等级5额定功率为120kW(它由基本单元加上扩展功率单元组成),最多可8台并联,组成1000kW功率输出。
通用型驱动器配置有大量的参数和20个菜单功能,便于用户在不改变硬件配置的条件下,方便地设置成V/F控制、无速度传感器开环矢量控制、闭环磁通矢量控制、永磁无刷交流伺服电动机控制及再生单元五种工作方式,适用于各种场合。通用型驱动器的出现,将大大降低机床用进给系统和主轴系统的硬件成本。
免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。