首页 理论教育 重大研究计划SCI论文发表成果及学术交流情况

重大研究计划SCI论文发表成果及学术交流情况

时间:2023-07-01 理论教育 版权反馈
【摘要】:本重大研究计划取得了丰硕的学术成绩。共计发表SCI论文3813篇,其中与美国、德国、英国等49个国家和地区的国际同行合作发表论文1033篇,占论文总数的27.09%,极大地推动了国内与国际学术界间的交流与合作。此外,举办国际会议79次,国内会议76次,参加国际学术会议519人次,其中365人次在国际会议上做大会特邀报告。2人当选美国机械工程师协会会士,2人当选电气和电子工程师协会会士。

重大研究计划SCI论文发表成果及学术交流情况

本重大研究计划取得了丰硕的学术成绩。共计发表SCI论文3813篇,其中与美国、德国英国等49个国家和地区的国际同行合作发表论文1033篇,占论文总数的27.09%,极大地推动了国内与国际学术界间的交流与合作。在项目资助下取得的多项代表性研究成果发表在各类高水平期刊上,其中Nature系列刊物(Nat Nanotechnol, Nat Mater, Nat Phys, Nat Energy等)上发表论文19篇,影响因子大于20的高水平论文83篇,影响因子大于10的高水平论文375篇,并有91篇论文入选ESI高被引论文。取得的研究成果不仅拓展了学科界面,而且促进了多学科交叉融合,论文成果涉及工程学、材料学、物理学、化学光学等28个学科,平均学科交叉率为2.06%。项目研究成果共授权发明专利935件,出版中英文专著66部,研发试验装置17台/套。此外,举办国际会议79次,国内会议76次,参加国际学术会议519人次,其中365人次在国际会议上做大会特邀报告。项目资助下获得的多项突出性研究成果荣获各类奖项:国家级奖励12项,包括国家自然科学奖二等奖6项、国家科技进步奖二等奖1项、国家技术发明奖二等奖5项;何梁何利奖2项;国防科技创新团队奖1项;省部级奖励21项,国际学术奖1项。

在项目顺利执行过程中不仅取得了丰硕的科研成果,而且为国家培养了大量科研人才。6人当选中国科学院院士,2人当选中国工程院院士。2人当选美国机械工程师协会会士,2人当选电气电子工程师协会会士。另有15人获得“长江学者”称号,18人获得国家杰出青年科学基金,并培养博士后、硕博士研究生974名。

[1] ZHU M, ZHOU Z, PENG B, et al. Modulation of spin dynamics via voltage control of spin-lattice coupling in multiferroics.Adv Funct Mater, 2017, 27(10): 1605598.

[2] WANG D,HLINKA J, BOKOV A A, et al. Fano resonance and dipolar relaxation in leadfree relaxors. Nat Comm, 2014, 5: 5100.

[3] SUN M,XU H.A novel application of plasmonics: plasmon-driven surface-catalyzed reactions. Small, 2012, 8(18): 2777-2786.

[4] LI W, GENG X, GUO Y, et al.Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano, 2011, 5(9): 6955-6961.

[5] GENG X, NIU L, XING Z, et al.Aqueous-processable noncovalent chemically converted graphene-quantum dot composites for flexible and transparent optoelectronic films. Adv Mater, 2010, 22(5): 638-642.

[6] LI Z, BAO K, FANG Y, et al.Correlation between incident and emission polarization in nanowire surface plasmon waveguides. Nano Lett , 2010, 10(5): 1831-1835.

[7] GONG Y, ZHANG X, LIU G, et al.Layer-controlled and wafer-scale synthesis of uniform and high-quality graphene films on a polycrystalline nickel catalyst. Adv Funct Mater,2012, 22(15): 3153-3159.

[8] GUO W, CAO L, XIA J, et al. Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source. Adv Funct Mater,2010, 20(8): 1339-1344.

[9] GUO W, XIA H, CAO L, et al. Integrating ionic gate and rectifier within one solidstate nanopore via modification with dual-responsive copolymer brushes. Adv Funct Mater,2010, 20(20): 3561-3567.

[10] ZHOU Y, GUO W, CHENG J, et al. High-temperature gating of solid-state nanopores with thermo-responsive macromolecular nanoactuators in ionic liquids. Adv Mater, 2012, 24(7): 962-967.

[11] CAO L, GUO W, MA W, et al. Towards understanding the nanofluidic reverse electrodialysis system: well matched charge selectivity and ionic composition. EnergEnviron Sci ,2011, 4(6): 2259-2266.

[12] JIANG Y, LIU N, GUO W, et al. Highly-efficient gating of solid-state nanochannels by DNA supersandwich structure containing ATP aptamers: a nanofluidic implication logic device.J Am Chem Soc,2012, 134(37): 15395-15401.

[13] ZHOU X, XIA S, LU Z, et al. Biomineralization-assisted ultrasensitive detection of DNA. J Am Chem Soc, 2010, 132(20): 6932-6934.

[14] ZHOU X, CAO P, TIAN Y, et al. Expressed peptide assay for DNA detection. J Am Chem Mater,2010, 132(12):4161-4168.

[15] SHU X, LU Z, ZHU J. Metal-organic hybrid particles with variable sub-stoichiometric metal contents. Chem Mater,2010, 22(11): 3310-3312.

[16] WANG J, LIU Y, PENG F, et al. A general route to efficient functionalization of silicon quantum dots for high-performance fluorescent probes. Small,2012, 8(15): 2430-2435.

[17] LU X, WANG G, ZHAI T, et al. Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett,2012, 12(3): 1690-1696.

[18] LU X, YU M, WANG G, et al. H-TiO2@ MnO2//H-TiO2@ C core-shell nanowires for high performance and flexible asymmetric supercapacitors. Adv Mater,2013,25(2):267-272.

[19] LU X, ZHAI T, ZHANG X, et al. WO3-x@ Au@ MnO2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv Mater,2012, 24(7):938-944.

[20] LU X, YU M, ZHAI T, et al. High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett,2013, 13(6): 2628-2633.

[21] LU X, WANG G, ZHAI T, et al. Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. Nano Lett,2012, 12(10): 5376-5381.

[22] LU X, ZHENG D, ZHAI T, et al. Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energ Environ Sci, 2011,4(8): 2915-2921.

[23] LI Q, WANG Z L, LI G R, et al. Design and synthesis of MnO2/Mn/MnO2 sandwichstructured nanotube arrays with high supercapacitive performance for electrochemical energy storage. Nano Lett,2012, 12(7): 3803-3807.

[24] WANG G, WANG H, LU X, et al. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv Mater,2014,26(17): 2676-2682.

[25] DING L X, WANG A L, LI G R, et al. Porous Pt-Ni-P composite nanotube arrays: highly electroactive and durable catalysts for methanol electrooxidation.J Am Chem Soc ,2012, 134(13): 5730-5733.

[26] WANG G, LU X, LING Y, et al. LiCl/PVA gel electrolyte stabilizes vanadium oxidenanowire electrodes for pseudocapacitors. ACS Nano,2012,6(11): 10296-10302.

[27] SHI J, CUI H N, LIANG Z, et al. The roles of defect states in photoelectric and photocatalytic processes for Znx Cd1-x S. Energ Environ Sci,2011, 4(2): 466-470.

[28] WANG G, LING Y, LU X, et al. Solar driven hydrogen releasing from urea and human urine. Energ Environ Sci,2012, 5(8): 8215-8219.

[29] MENG F, DING Y. Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities. Adv Mater, 2010, 23(35): 4098-4102.

[30] WANG R, WANG C, CAI W B, et al. Ultralow-platinum-loading high-performance nanoporous electrocatalysts with nanoengineered surface structures. Adv Mater,2010, 22(16): 1845-1848.

[31] WANG R, XU C, BI X, et al. Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts. Energ Environ Sci,2012, 5(1): 5281-5286.

[32] ZHUANG X,NING C Z,PAN A.Composition and bandgap-graded semiconductor alloy nanowires. Adv Mater,2012, 24(1): 13-33.

[33] GU F, YANG Z, YU H, et al. Spatial bandgap engineering along single alloy nanowires. J Am Chem Soc,2011, 133(7): 2037-2039.

[34] XU J, MA L, GUO P, et al. Room-temperature dual-wavelength lasing from singlenanoribbon lateral heterostructures. J Am Chem Soc, 2011, 134(30): 12394-12397.

[35] YANG Z, XU J, WANG P, et al. On-nanowire spatial band gap design for white light emission. Nano Lett,2011, 11(11): 5085-5089.

[36] XU J, ZHUANG X, GUO P, et al. Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires. Nano Lett,2012, 12(9): 5003-5007.

[37] LI H, ZHANG Q, PAN A, et al. Single-crystalline Cu4Bi4S9 nanoribbons: facile synthesis, growth mechanism, and surface photovoltaic properties. Chem Mater,2011, 23(5): 1299-1305.

[38] YAN C, LI X, ZHOU K, et al. Heteroepitaxial growth of gasbnanotrees with an ultra-low reflectivity in a broad spectral range. Nano Lett,2012, 12(4): 1799-1805.

[39] GUO P, ZHUANG X, XU J, et al. Low-threshold nanowire laser based on compositionsymmetric semiconductor nanowires. Nano Lett,2013, 13(3): 1251-1256.

[40] QIN Y, PAN A, LIU L, et al. Atomic layer deposition assisted template approach for electrochemical synthesis of Au crescent-shaped half-nanotubes. ACS Nano,2011, 5(2): 788-794.

[41] WANG Q, GUO X, CAI L, et al. TiO2-decorated graphenes as efficient photoswitches with high oxygen sensitivity. Chem Sci,2011, 2(9): 1860-1864.

[42] HE F, LIU L, LI L. Water-soluble conjugated polymers for amplified fluorescence detection of template-independent DNA elongation catalyzed by polymerase. Adv Funct Mater,2011, 21(16): 3143-3149.

[43] XU X, LIU B, ZOU Y, et al. Organozinc compounds as effective dielectric modification layers for polymer field-effect transistors. Adv Funct Mater,2012, 22(19): 4139-4148.

[44] WANG J, WANG Z, LI Q, et al. Revealing interface-assisted charge-transfer mechanisms by using silicon nanowires as local probes. Angew Chem Int Edit ,2013, 125(12): 3453-3457.

[45] SONG J, HUANG S, HU K, et al. Fabrication of superoleophobic surfaces on Al substrates. J Mater Chem A,2013, 1(46): 14783-14789.

[46] CHEN F, SONG J, LU Y, et al. Creating robust superamphiphobic coatings for both hard and soft materials. J Mater Chem A,2015, 3(42): 20999-21008.

[47] WANG S, XIAO B, YANG T, et al. Enhanced HCHO gas sensing properties by Agloaded sunflower-like In2 O3 hierarchical nanostructures. J Materials Chem A,2014, 2(18): 6598-6604.

[48] CHEN X, GUO Z, XU W H, et al. Templating synthesis of SnO2 nanotubes loaded with Ag2O nanoparticles and their enhanced gas sensing properties. Adv Funct Mater,2011, 21(11): 2049-2056.

[49] CHEN X, GUO Z, YANG G M, et al. Electrical nanogap devices for biosensing. Mater Today,2010, 13(11): 28-41.

[50] WANG P, LIU Z G, CHEN X, et al. UV irradiation synthesis of an Au–graphene nanocomposite with enhanced electrochemical sensing properties. J Mater Chem A,2013, 1(32): 9189-9195.

[51] CHEN X, CUI C H, GUO Z, et al. Unique heterogeneous silver-copper dendrites with a trace amount of uniformly distributed elemental Cu and their enhanced SERS properties. Small,2011, 7(7): 858-863.

[52] CHEN X, LIU Z G, ZHAO Z Q, et al. SnO2tube-in-tube nanostructures: Cu@ C nanocable templated synthesis and their mutual interferences between heavy metal ions revealed by stripping voltammetry. Small,2013, 9(13): 2233-2239.

[53] XU W, ZHANG Y, GUO Z, et al. Conduction performance of individual Cu@C coaxial nanocable connectors. Small,2012, 8(1): 53-58.

[54] YU Y, CHEN X, WEI Y, et al. CdSe Quantum dots enhance electrical and electrochemical signals of nanogap devices for bioanalysis. Small,2012, 8(21): 3274-3281.

[55] GUO Z, CHEN X, XU W H, et al. T-shaped SnO2 nanowire current splitter. Mater Today,2011, 14(1-2): 42-49.

[56] GUO Z, CHEN X, LIU J H, et al. Transport phenomena and conduction mechanism of individual cross-junction SnO2 nanobelts. Small,2013, 9(16): 2678-2683.

[57] ZHANG Y L, CHEN Q D, XIA H, et al. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today,2010, 5(5): 435-448.

[58] WU D, WU S Z, CHEN Q D, et al. Curvature-driven reversible in situ switching between pinned and roll-down superhydrophobic states for water droplet transportation.Adv Mater,2011, 23(4): 545-549.

[59] XIA H, WANG J, TIAN Y, et al. Ferrofluids for fabrication of remotely controllable micronanomachines by two-photon polymerization. Adv Mater,2010, 22(29): 3204-3207.

[60] WU D, WANG J N, WU S Z, et al. Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding. Adv Funct Mater,2011, 21(15): 2927-2932.

[61] SUN Y L, DONG W F, NIU L G, et al. Protein-based soft micro-optics fabricated by femtosecond laser direct writing. Light-Sci Appl,2014, 3(1): e129.

[62] XU B B, XIA H, NIU L G, et al. Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating. Small,2010, 6(16): 1762-1766.

[63] JIN Y, FENG J, ZHANG X L. et al. Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode. Adv Mater,2012, 24(9): 1187-1191.

[64] FANG H H, DING R, LU S Y, et al. Distributed feedback lasers based on thiophene/phenylene co-oligomer single crystals. Adv Funct Mater,2012, 22(1): 33-38.

[65] SUN Y L, LI Q, SUN S M, et al. Aqueous multiphoton lithography with multifunctional silk-centred bio-resists. Nat Commun,2015, 6: 8612.

[66] WU D, WU S Z, ZHAO S, et al. Rapid, controllable fabrication of regular complex microarchitectures by capillary assembly of micropillars and their application in selectively trapping/releasing microparticles. Small,2013, 9(5): 760-767.

[67] XIONG W, ZHOU Y S, HE X N, et al. Simultaneous additive and subtractive threedimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation. Light-Sci Appl,2012, 1(4): e6.

[68] XIONG W, ZHOU Y S, JIANG L J, et al. Single-step formation of graphene on dielectric surfaces. Adv Mater,2013, 25(4): 630-634.

[69] JIANG L, WANG A D, LI B, et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light-Sci Appl,2018, 7(2): 17134.

[70] LI X, DING Y, SHAO J, et al. Fabrication of microlensarrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes. Adv Mater,2012, 24(23): OP165-OP169.

[71] JIANG W, LIU H, YIN L, et al. Fabrication of well-arrayed plasmonic mesoporous TiO2/Ag films for dye-sensitized solar cells by multiple-step nanoimprint lithography. J Mater Chem A,2013, 1(21): 6433-6440.

[72] REN H, WANG C, ZHANG J, et al. DNA cleavage system of nanosized graphene oxide sheets and copper ions. ACS Nano,2010, 4(12): 7169-7174.

[73] YANG Y, ZHANG J, WU X, et al. Composites of boron-doped carbon nanosheets and iron oxide nanoneedles: fabrication and lithium ion storage performance. J Mater ChemA,2014, 2(24): 9111-9117.

[74] GAO Y, LIU L Q, ZU S Z, et al. The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers. ACS Nano,2011, 5(3): 2134-2141.

[75] CHEN Q, LUO M, HAMMERSHØJ P, et al. Microporous polycarbazole with high specific surface area for gas storage and separation. J Am Chem Soc,2012, 134(14): 6084-6087.

[76] CHEN Q, LIU D P, LUO M, et al. Nitrogen-containing microporous conjugated polymers via carbazole-based oxidative coupling polymerization: preparation, porosity, and gas uptake. Small,2014, 10(2): 308-315.

[77] ZHAO Y C, ZHAO L, MAO L J, et al. One-step solvothermal carbonization to microporous carbon materials derived from cyclodextrins. J Mater Chem A,2013, 1(33): 9456-9461.

[78] LI J, ZHU J, GAO X. Bio-inspired high-performance antireflection and antifogging polymer films. Small,2014, 10(13): 2578-2582.

[79] WANG H, LI Y, LIU M, et al. Overcoming the coupling dilemma in DNA-programmable nanoparticle assemblies by “Ag+ soldering”. Small, 2015, 11(19): 2247-2251.

[80] LIU M, FANG L, LI Y, et al. “Flash” preparation of strongly coupled metal nanoparticle clusters with sub-nm gaps by Ag+ soldering: toward effective plasmonic tuning of solution-assembled nanomaterials. Chem Sci, 2016, 7(8): 5435-5440.

[81] WANG H, LI Y, GONG M, et al. Core solution: a strategy towards gold core/non-gold shell nanoparticles bearing strict DNA-valences for programmable nanoassembly. Chem Sci,2014, 5(3): 1015-1020.

[82] ZHAO S, YIN H, DU L, et al. Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano,2014, 8(12): 12660-12668.

[83] ZHAO S, WANG Y, DONG J, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat Energ, 2016, 1(12): 16184.

[84] ZHAO S, YIN H, DU L, et al. Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells. J Mater Chem A,2014, 2(11): 3719-3724.

[85] GU H, BI L, FU Y. et al. Multistate electrically controlled photoluminescence switching. Chem Sci,2013, 4(12): 4371-4377.

[86] SUN Q, ZHANG C, LI Z, et al. On-surface formation of one-dimensional polyphenylene through bergman cyclization. J Am Chem Soc,2013, 135(23): 8448-8451.

[87] ZHI J, DENG S, ZHANG Y, et al. Embedding Co3O4 nanoparticles in SBA-15 supported carbon nanomembrane for advanced supercapacitor materials. J Mater Chem A,2013, 1(9): 3171-3176.

[88] DENG S, ZHI J, ZHANG X, et al. Size-controlled synthesis of conjugated polymernanoparticles in confined nanoreactors. Angew Chem Int Edit,2014, 53(51): 14144-14148.

[89] DONG L, ZHENG Z, WANG Y, et al. Co-sensitization of N719 with polyphenylenes from the Bergman cyclization of maleimide-based enediynes for dye-sensitized solar cells. J Mater Chem A,2015, 3(21): 11607-11614.

[90] WANG Y, XIONG R, DONG L, et al. Synthesis of carbon nanomembranes through cross-linking of phenyl self-assembled monolayers for electrode materials in supercapacitors. J Mater Chem A,2014, 2(15): 5212-5217.

[91] JIANG J, ZHAO K, XIAO X, et al. Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. J Am Chem Soc,2012, 134(10): 4473-4476.

[92] ZHAO K, ZHANG L, WANG J, et al. Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets. J Am Chem Soc,2013, 135(42): 15750-15753.

[93] WANG W, ZHANG L, AN T, et al. Comparative study of visible-light-driven photocatalytic mechanisms of dye decolorization and bacterial disinfection by B-Ni-codoped TiO2 microspheres: the role of different reactive species. Appl Catal B-Environ,2011, 108: 108-116.

[94] WANG J, YU Y, ZHANG L. Highly efficient photocatalytic removal of sodium pentachlorophenate with Bi3O4Br under visible light. Appl Catal B-Environ,2013, 136: 112-121.

[95] XIAO X, JIANG J, ZHANG L. Selective oxidation of benzyl alcohol into benzaldehyde over semiconductors under visible light: The case of Bi12O17Cl2 nanobelts. Appl Catal B-Environ,2013, 142 : 487-493.

[96] LEI Y, JIA H, HE W, et al. Hybrid solar cells with outstanding short-circuit currents based on a room temperature soft-chemical strategy: the case of P3HT: Ag2S. J Am Chem Soc ,2012, 134(42): 17392-17395.

[97] LIU W, AI Z, CAO M, et al. Ferrous ions promoted aerobic simazine degradation with Fe@ Fe2O3 core-shell nanowires. Appl Catal B-Environ, 2014, 150: 1-11.

[98] LIU X H, GUAN C Z, DING S Y, et al. On-surface synthesis of single-layered twodimensional covalent organic frameworks via solid-vapor interface reactions. J Am Chem Soc,2013, 135(28): 10470-10474.

[99] LIU X H, GUAN C Z, WANG D, et al. Graphene-like single-layered covalent organic frameworks: synthesis strategies and application prospects. Adv Mater,2014, 26(40): 6912-6920.

[100] CHEN T, YANG W H, WANG D, et al. Globally homochiral assembly of twodimensional molecular networks triggered by co-absorbers. Nat Commun,2013, 4: 1389.

[101] LIU J, CHEN T, DENG X, et al. Chiral hierarchical molecular nanostructures on two-dimensional surface by controllable trinary self-assembly. J Am Chem Soc,2011, 133(51): 21010-21015.

[102] LIU X H, MO Y P, YUE J Y, et al. Isomeric routes to schiff-base single-layered covalent organic frameworks. Small,2014, 10(23): 4934-4939.

[103] ZHENG Q N, LIU X H, LIU X R, et al. Bilayer molecular assembly at a solid/liquid interface as triggered by a mild electric field. Angew Chem Int Edit ,2014, 126(49): 13613-13617.

[104] CHEN T, WANG D, GAN L H, et al. Direct probing of the structure and electron transfer of fullerene/ferrocene hybrid on Au (111) electrodes by in situ electrochemical STM. J Am Chem Soc,2014, 136(8): 3184-3191.

[105] LAN H, DING Y. Ordering, positioning and uniformity of quantum dot arrays. Nano Today,2012, 7(2): 94-123.

[106] HUI Y Y, LIU X, JIE W, et al. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano,2013, 7(8): 7126-7131.

[107] LIU X, XU T, WU X, et al. Top-down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nat Commun,2013, 4 : 1776.

[108] YIN J, LI X, YU J, et al. Generating electricity by moving a droplet of ionic liquid along graphene. Nat Nanotech,2014, 9(5): 378.

[109] ZHANG Z, LIU X, YAKOBSON B I, et al. Two-dimensional tetragonal TiC monolayer sheet and nanoribbons. J Am Chem Soc,2012, 134(47): 19326-19329.

[110] YIN J, LI X, ZHOU J, et al. Ultralight three-dimensional boron nitride foam with ultralow permittivity and superelasticity. Nano Lett,2013, 13(7): 3232-3236.

[111] ZHANG Z, ZENG X C, GUO W. Fluorinating hexagonal boron nitride into diamond-like nanofilms with tunable band gap and ferromagnetism. J Am Chem Soc,2011, 133(37): 14831-14838.

[112] QIU H, GUO W. Electromelting of confined monolayer ice. Phys Rev Lett,2013, 110(19): 195701.

[113] YIN J, ZHANG Z, LI X, et al. Harvesting energy from water flow over graphene? Nano Lett,2012, 12(3): 1736-1741.

[114] YIN J, ZHANG Z, LI X, et al. Waving potential in graphene. Nat Commun,2014, 5:3582.

[115] FU X,SU C,FU Q,et al.Tailoring exciton dynamics by elastic strain-gradient in semiconductors. Adv Mater,2014, 26(16): 2572-2579.

[116] YIN J, YU J, LI X, et al. Large single-crystal hexagonal boron nitride monolayer domains with controlled morphology and straight merging boundaries. Small,2015, 11(35): 4497-4502.

[117] LIU X, ZHANG Z, GUO W. Universal rule on chirality-dependent bandgaps in graphene antidot lattices. Small,2013, 9(8): 1405-1410.

[118] ZHANG Z, GUO W. Intrinsic metallic and semiconducting cubic boron nitride nanofilms. Nano Lett,2012, 12(7): 3650-3655.

[119] LIU X, PAN D, HONG Y, et al. Bending poisson effect in two-dimensional crystals. Phys Rev Lett,2014, 112(20): 205502.

[120] LI X, SHEN C, WANG Q, et al. Hydroelectric generator from transparent flexible zinc oxide nanofilms. Nano Energ,2017, 32 : 125-129.

[121] MIAO C, TAI G, ZHOU J, et al. Phonon trapping in pearl-necklace-shaped silicon nanowires. Small,2015, 11(48): 6411-6415.

[122] YANG B, YANG Z, WANG R, et al. Silver nanoparticle deposited layered double hydroxide nanosheets as a novel and high-performing anode material for enhanced Ni-Zn secondary batteries. J Mater Chem A,2014, 2(3): 785-791.

[123] ZHANG J, LING Y, GAO W, et al. Enhanced photoelectrochemical water splitting on novel nanoflake WO3 electrodes by dealloying of amorphous Fe-W alloys. J Mater Chem A,2013, 1(36): 10677-10685.

[124] LAN X, CHEN Z, DAI G, et al. Bifacial DNA origami-directed discrete, threedimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality. J Am Chem Soc,2013, 135(31): 11441-11444.

[125] LI F, WANG Q. Fabrication of nanoarchitectures templated by virus-based nanoparticles: strategies and applications. Small,2014, 10(2): 230-245.

[126] LAN X, CHEN Z, LIU B J, et al. DNA-directed gold nanodimers with tunable sizes and interparticle distances and their surface plasmonic properties. Small,2013, 9(13): 2308-2315.

[127] LI F,GAO D, ZHAI X, et al. Tunable, discrete, three-dimensional hybrid nanoarchitectures. Angew Chem Int Edit, 2011, 123(18): 4288-4291.

[128] LI L, WANG Q. Spontaneous self-assembly of silver nanoparticles into lamellar structured silver nanoleaves. ACS Nano,2013, 7(4): 3053-3060.

[129] LI F, CHEN Y, CHEN H, et al. Monofunctionalization of protein nanocages. J Am Chem Soc,2011, 133(50): 20040-20043.

[130] LI F, CHEN H, ZHANG Y, et al. Three-dimensional gold nanoparticle clusters with tunable cores templated by a viral protein scaffold. Small, 2012, 8(24): 3832-3838.

[131] CHEN Z, LAN X, WANG Q.DNA origami directed large-scale fabrication of nanostructures resembling room temperature single-electron transistors. Small , 2013, 9(21): 3567-3571.

[132] LI X, CHOY W C, HUO L, et al. Dual plasmonic nanostructures for high performance inverted organic solar cells. Adv Mater, 2012, 24(22): 3046-3052.

[133] CHEN B, ZHONG H, ZHANG W, et al. Highly emissive and color-tunable cuins2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance. Adv Funct Mater, 2012, 22(10): 2081-2088.

[134] TAN Z A, ZHANG W, ZHANG Z, et al. High-performance inverted polymer solar cells with solution-processed titanium chelate as electron-collecting layer on ITO electrode.Adv Mater,2012, 24(11): 1476-1481.

[135] TAN Z A, QIAN D,ZHANG W, et al. Efficient and stable polymer solar cells with solutionprocessed molybdenum oxide interfacial layer. J Mater Chem A, 2013, 1(3): 657-664.

[136] TAN Z A, LI L, WANG F, et al. Solution-processed rhenium oxide: a versatile anode buffer layer for high performance polymer solar cells with enhanced light harvest. Adv Energ Mater, 2014, 4(1): 1300884.

[137] SUN Y, CUI C, WANG H, et al. Efficiency enhancement of polymer solar cells based on poly (3-hexylthiophene)/indene-C70 bisadduct via methylthiophene additive. Adv Energ Mater ,2011, 1(6): 1058-1061.

[138] WANG F, XU Q, TAN Z A, et al. Efficient polymer solar cells with a solution-processed and thermal annealing-free RuO2 anode buffer layer. J Mater Chem A ,2014, 2(5): 1318-1324.

[139] JIANG F, LIU J, LI Y, et al. Ultralong CdTe nanowires: catalyst-free synthesis and high-tieldtransformation into core-shell heterostructures. Adv Funct Mater, 2012, 22(11): 2402-2411.

[140] LI J, CHEN S, YANG H, et al. Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces. Adv Funct Mater ,2015, 25(5): 704-710.

[141] HU Z, LIU Z, LI L, et al. Wafer-Scale double-layer stacked Au/Al2O3@ Au nanosphere structure with tunable nanospacing for surface-enhanced raman scattering. Small, 2014, 10(19): 3933-3942.

[142] ZHANG X S, HAN M D, WANG R X, et al. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett, 2013, 13(3): 1168-1172.

[143] MENG B, TANG W, TOO Z H, et al. A transparent single-friction-surface triboelectric generator and self-powered touch sensor. Energ& Environ Sci, 2013, 6(11): 3235-3240.

[144] HAN M, ZHANG X S, MENG B, et al. R-shaped hybrid nanogenerator with enhanced piezoelectricity. ACS Nano ,2013, 7(10): 8554-8560.

[145] ZHANG X S, HAN M D, WANG R X, et al. High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment. Nano Energ ,2014, 4 : 123-131.

[146] ZHANG X S, HAN M D, MENG B, et al. High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies. Nano Energ, 2015, 11 : 304-322.

[147] TANG W, MENG B, ZHANG H X.Investigation of power generation based on stacked triboelectric nanogenerator. Nano Energ, 2013, 2(6): 1164-1171.

[148] MAO H, WU W, SHE D, et al. Microfluidic surface-enhanced Raman scattering sensors based on nanopillar forests realized by an oxygen-plasma-stripping-of-photoresisttechnique. Small,2014, 10(1): 127-134.

[149] MENG B, TANG W, ZHANG X, et al. Self-powered flexible printed circuit board with integrated triboelectric generator. Nano Energ, 2013, 2(6):1101-1106.

[150] CHEN T H, HSU J J, ZHAO X, et al. Left-right symmetry breaking in tissue morphogenesis via cytoskeletal mechanics. Circ Res ,2012, 110(4): 551-559.

[151] SHI M, ZHANG J, CHEN H, et al. Self-powered analogue smart skin. ACS Nano, 2016, 10(4): 4083-4091.

[152] ZHANG H, ZHANG X S, CHENG X, et al. A flexible and implantable piezoelectric generator harvesting energy from the pulsation of ascending aorta: in vitro and in vivo studies. Nano Energ ,2015, 12 : 296-304.

[153] CHENG X, MENG B, CHEN X, et al. Single-step fluorocarbon plasma treatmentinduced wrinkle structure for high-performance triboelectric nanogenerator. Small, 2016, 12(2): 229-236.

[154] CHEN X, SONG Y, CHEN H, et al. An ultrathin stretchable triboelectric nanogenerator with coplanar electrode for energy harvesting and gesture sensing. J Mater Chem A, 2017, 5(24): 12361-12368.

[155] HAN M, YU B, QIU G, et al .Electrification based devices with encapsulated liquid for energy harvesting, multifunctional sensing, and self-powered visualized detection. J Mater Chem A,2015, 3(14): 7382-7388.

[156] LIU W, HAN M, SUN X, et al. An unmovable single-layer triboloelectric generator driven by sliding friction. Nano Energ,2014, 9 : 401-407.

[157] YU H,XU P, LEE D W, et al. Porous-layered stack of functionalized AuNP-rGO (gold nanoparticles-educed graphene oxide) nanosheets as a sensing material for the microgravimetric detection of chemical vapor. J Mater Chem A ,2013, 1(14): 4444-4450.

[158] ZHANG Y, HAN T, FANG J, et al. Integrated Pt2Ni alloy@ Pt core-shell nanoarchitectures with high electrocatalytic activity for oxygen reduction reaction. J Mater Chem A ,2014, 2(29): 11400-11407.

[159] ZHAO Q, JI M, QIAN H, et al. Controlling structural symmetry of a hybrid nanostructure and its effect on efficient photocatalytic hydrogen evolution. Adv Mater ,2014, 26(9): 1387-1392.

[160] GUI J, JI M, LIU J, et al. Phosphine-initiated cation exchange for precisely tailoring composition and properties of semiconductor nanostructures: old concept, new applications. Angew Chem Int Edit ,2015, 54(12): 3683-3687.

[161] ZHANG J, YU J, JARONIEC M, et al. Noble metal-free reduced graphene oxide-Znx Cd1-x S nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett, 2012, 12(9): 4584-4589.

[162] ZHANG J, YU J, ZHANG Y, et al. Visible light photocatalytic H2-production activityof CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett,2011, 11(11): 4774-4779.

[163] LIU Q, GUO B, RAO Z, et al. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett, 2013, 13(6): 2436-2441.

[164] XIE G, ZHANG K, GUO B, et al. Graphene-based materials for hydrogen generation from light-driven water splitting. Adv Mater, 2013, 25(28): 3820-3839.

[165] LI C J, XU G R, ZHANG B, et al .High selectivity in visible-light-driven partial photocatalytic oxidation of benzyl alcohol into benzaldehyde over single-crystalline rutile TiO2 nanorods. Appl Catal B-Environ ,2012, 115 : 201-208.

[166] ZHANG K, LIU Q, WANG H, et al. TiO2 single crystal with four-truncated-bipyramid morphology as an efficient photocatalyst for hydrogen production. Small, 2013, 9(14): 2452-2459.

[167] ZHANG K, DAI Y, ZHOU Z, et al. Polarization-induced saw-tooth-like potential distribution in zincblende-wurtzite superlattice for efficient charge separation. Nano Energ, 2017, 41 : 101-108.

[168] CUI A, LIU Z, LI J, et al. Directly patterned substrate-free plasmonic “nanograter” structures with unusual fano resonances. Light-Sci Appl ,2015, 4(7): e308.

[169] SHEN X, SUN B, LIU D, et al. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture. J Am Chem Soc, 2011, 133(48): 19408-19415.

[170] ZHANG Y, CUI W, ZHU Y, et al. High efficiency hybrid PEDOT: PSS/nanostructured silicon schottky junction solar cells by doping-free rear contact. Energ Environ Sci, 2015, 8(1): 297-302.

[171] GU X, CUI W, LI H, et al. A solution-processed hole extraction layer made from ultrathin MoS2 nanosheets for efficient organic solar cells. Adv Energ Mater, 2013, 3(10): 1262-1268.

[172] LIU R, LEE S T, SUN B. 13.8% efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer. Adv Mater ,2014, 26(34): 6007-6012.

[173] SONG T, LEE S T, SUN B. Silicon nanowires for photovoltaic applications: the progress and challenge. Nano Energ, 2012, 1(5): 654-673.

[174] ZHANG Y, ZU F, LEE S T, et al. Heterojunction with organic thin layers on silicon for record efficiency hybrid solar cells. Adv Energ Mater ,2014, 4(2): 1300923.

[175] YUAN Z, WU Z, BAI S, et al. Hot-electron injection in a sandwiched Tiox-Au-Tiox structure for high-performance planar perovskite solar cells. Adv Energ Mater, 2015, 5(10): 1500038.

[176] ZHANG J, SONG T, SHEN X, et al. A 12%-efficient upgraded metallurgical gradesilicon-organic heterojunction solar cell achieved by a self-purifying process. ACS Nano ,2014, 8(11): 11369-11376.

[177] ZHU Y, YUAN Z, CUI W, et al.A cost-effective commercial soluble oxide cluster for highly efficient and stable organic solar cells. J Mater Chem A, 2014, 2(5): 1436-1442.

[178] WU C, ZOU Y, WU T, et al. Improved performance and stability of all-inorganic perovskite light-emitting diodes by antisolvent vapor treatment. Adv Funct Mater ,2017, 27(28): 1700338.

[179] WANG Y, XIA Z, LIU L, et al. The light-induced field-effect solar cell concept-perovskite nanoparticle coating introduces polarization enhancing silicon cell efficiency. Adv Mater ,2017, 29(18): 1606370.

[180] ZOU Y, LIU Y, BAN M, et al. Crosslinked conjugated polymers as hole transport layers in high-performance quantum dot light-emitting diodes. Nanoscale Horiz,2017, 2(3): 156-162.

[181] CUI W, WU Z, LIU C, et al. Room temperature solution processed tungsten carbide as an efficient hole extraction layer for organic photovoltaics. J Mater Chem A, 2014, 2(11): 3734-3740.

[182] LIU Y, SUN N, LIU J, et al. Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops. ACS Nano, 2018, 12(3): 2893-2899.

[183] HU L, YAN J, LIAO M, et al. An optimized ultraviolet-a light photodetector with widerange photoresponse based on ZnS/ZnO biaxial nanobelt. Adv Mater, 2012, 24(17): 2305-2309.

[184] HU L, WU L, LIAO M, et al. Electrical transport properties of large, individual NiCo2O4 nanoplates. Adv Funct Mater, 2012, 22(5): 998-1004.

[185] HAN S, HU L, LIANG Z, et al. One-step hydrothermal synthesis of 2D hexagonal nanoplates of α-Fe2O3/graphene composites with enhanced photocatalytic activity. Adv Funct Mater, 2014, 24(36): 5719-5727.

[186] HAN S, HU L, GAO N, et al. Efficient self-assembly synthesis of uniform CdS spherical nanoparticles-Au nanoparticles hybrids with enhanced photoactivity. Adv Functl Mater, 2014, 24(24): 3725-3733.

[187] HU L, CHEN M, FANG X, et al. Oil-water interfacial self-assembly: a novel strategy for nanofilm and nanodevice fabrication. Chem Soc Rev, 2012, 41(3):1350-1362.

[188] PENG L,HU L,FANG X. Energy harvesting for nanostructured self-powered photodetectors. Adv Funct Mater ,2014, 24(18): 2591-2610.

[189] HU L, CHEN M, SHAN W, et al. Stacking-order-dependent optoelectronic properties of bilayer nanofilm photodetectors made from hollow ZnS and ZnO microspheres. Adv Mater, 2012, 24(43): 5872-5877.

[190] FANG X, YAN J, HU L, et al. Thin SnO2 nanowires with uniform diameter as excellent field emitters: a stability of more than 2400 minutes. Adv Funct Mater ,2012, 22(8): 1613-1622.

[191] CHEN H, HU L, FANG X, et al. General Fabrication of Monolayer SnO2 nanonets for high-performance ultraviolet photodetectors. Adv Funct Mater, 2012, 22(6): 1229-1235.

[192] ZHAO L, HU L, FANG X. Growth and device application of CdSe nanostructures. Adv Funct Mater ,2012, 22(8): 1551-1566.

[193] HU L, BREWSTER M M, XU X, et al. Heteroepitaxial growth of GaP/ZnS nanocable with superior optoelectronic response. Nano Lett, 2013, 13(5): 1941-1947.

[194] LIU H, HU L, WATANABE K, et al. Cathodoluminescence modulation of ZnS nanostructures by morphology, doping, and temperature. Adv Funct Mater ,2013, 23(29): 3701-3709.

[195] LIU B, ZHANG J, WANG X, et al. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett ,2012, 12(6): 3005-3011.

[196] WANG X, LU X, LIU B, et al. Flexible energy-storage devices: design consideration and recent progress. Adv Mater ,2014, 26(28): 4763-4782.

[197] XU J, WANG Q, WANG X, et al. Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@ RuO2 nanosheet arrays on carbon cloth. ACS Nano, 2013, 7(6):5 453-5462.

[198] WANG X, LIU B, LIU R, et al. Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew Chem Int Edit ,2014, 126(7): 1880-1884.

[199] LIU Z, XU J, CHEN D, et al. Flexible electronics based on inorganic nanowires. Chem Soc Rev, 2015, 44(1): 161-192.

[200] WANG Z, WANG H, LIU B, et al. Transferable and flexible nanorod-assembled TiO2 cloths for dye-sensitized solar cells, photodetectors, and photocatalysts. ACS Nano, 2011, 5(10): 8412-8419.

[201] WANG X, SONG W, LIU B, et al. High-performance organic-inorganic hybrid photodetectors based on P3HT: CdSe nanowire heterojunctions on rigid and flexible substrates. Adv Functl Mater ,2013, 23(9): 1202-1209.

[202] WANG Q, WANG X, XU J, et al. Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energ, 2014, 8 : 44-51.

[203] XU J,WU H, LU L, et al. Integrated Photo-supercapacitor based on bi-polar TiO2 nanotube arrays with selective one-side plasma-assisted hydrogenation. Adv Funct Mater ,2014, 24(13): 1840-1846.(www.xing528.com)

[204] QIAN Y, LIU R, WANG Q, et al. Efficient synthesis of hierarchical NiO nanosheets for high-performance flexible all-solid-state supercapacitors. J Mater Chem A, 2014, 2(28): 10917-10922.

[205] CHEN G, LIU Z, LIANG B, et al. Single-crystalline p-type Zn3As2 nanowires for fieldeffect transistors and visible-light photodetectors on rigid and flexible substrates. Adv Funct Mater ,2013, 23(21): 2681-2690.

[206] CHEN G, LIANG B, LIU X, et al. High-performance hybrid phenyl-C61-butyric acid methyl ester/Cd3P2 nanowire ultraviolet-visible-near infrared photodetectors. ACS Nano ,2013, 8(1): 787-796.

[207] LIU B, LIU B, WANG X, et al. Constructing optimized wire electrodes for fiber supercapacitors. Nano Energ ,2014, 10 : 99-107.

[208] LIU B, LIU B, WANG X, et al. Memristor-integrated voltage-stabilizing supercapacitor system. Adv Mater ,2014, 26(29): 4999-5004.

[209] CHEN S, WU Q, MISHRA C, et al. Thermal conductivity of isotopically modified graphene. Nat Mater ,2012, 11(3): 203.

[210] CHEN S, JI H, CHOU H, et al. Millimeter-size single-crystal graphene by suppressing evaporative loss of Cu during low pressure chemical vapor deposition. Adv Mater,2013, 25(14): 2062-2065.

[211] LI Q, CHOU H, ZHONG J H, et al. Growth of adlayer graphene on Cu studied by carbon isotope labeling. Nano Lett ,2013, 13(2): 486-490.

[212] LIU X, LONG Y Z, LIAO L, et al. Large-scale integration of semiconductor nanowires for high-performance flexible electronics. ACS Nano ,2012, 6(3): 1888-1900.

[213] ZOU X, WANG J, LIU X, et al. Rational design of sub-parts per million specific gas sensors array based on metal nanoparticles decorated nanowire enhancement-mode transistors. Nano Lett,2013, 13(7): 3287-3292.

[214] LIU X, WANG C, CAI B, et al. Rational design of amorphous indium zinc oxide/carbon nanotube hybrid film for unique performance transistors. Nano Lett ,2012, 12(7): 3596-3601.

[215] ZOU X, LIU X, WANG C, et al. Controllable electrical properties of metal-doped In2O3 nanowires for high-performance enhancement-mode transistors. ACS Nano, 2012, 7(1): 804-810.

[216] LIAO L, DUAN X. Graphene for radio frequency electronics. Mater Today ,2012, 15(7-8): 328-338.

[217] LIU X, JIANG L, ZOU X, et al.Scalable integration of indium zinc oxide/photosensitive-nanowire composite thin-film transistors for transparent multicolor photodetectors array. Adv Mater,2014, 26(18): 2919-2924.

[218] ZHAO Z, SHAN Z, ZHANG C, et al. Study on the diffusion mechanism of graphene grown on copper pockets. Small,2015, 11(12): 1418-1422.

[219] WANG C, CHENG R, LIAO L, et al. High performance thin film electronics based on inorganic nanostructures and composites. Nano Today, 2013, 8(5): 514-530.

[220] BAI S, WANG C, DENG M, et al. Surface polarization matters: enhancing the hydrogen-evolution reaction by shrinking pt shells in Pt-Pd-graphene stack structures. Angew Chem Int Edit,2014, 53(45): 12120-12124.

[221] LIU Q, LI X, XIAO Z, et al. Stable metallic 1T-WS2 nanoribbons intercalated with ammonia ions: the correlation between structure and electrical/optical properties. Adv Mater ,2015, 27(33): 4837-4844.

[222] LONG R, ZHOU S, WILEY B J, et al. Oxidative etching for controlled synthesis of metal nanocrystals: atomic addition and subtraction. Chem Soc Rev, 2014, 43(17): 6288-6310.

[223] LI B, LONG R, ZHONG X, et al. Investigation of size-dependent plasmonic and catalytic properties of metallic nanocrystals enabled by size control with HCl oxidative etching. Small ,2014, 8(11): 1710-1716.

[224] BAI Y, ZHANG W, ZHANG Z, et al. Controllably interfacing with metal: a strategy for enhancing CO oxidation on oxide catalysts by surface polarization. J Ame Chem Soc, 2014, 136(42): 14650-14653.

[225] LONG R, RAO Z, MAO K, et al. Efficient coupling of solar energy to catalytic hydrogenation by using well-designed palladium nanostructures. Angew Chem Int Edit, 2015, 127(8): 2455-2460.

[226] LIU D, LI L, GAO Y, et al. The nature of photocatalytic “water splitting” on silicon nanowires. Angew Chem Int Edit, 2015, 54(10): 2980-2985.

[227] WANG L, LI X, LI Z, et al. A new cubic phase for a NaYF4 host matrix offering high upconversion luminescence efficiency. Adv Mater ,2015, 27(37): 5528-5533.

[228] LIU D, YANG D, GAO Y, et al. Flexible near-infrared photovoltaic devices based on plasmonic hot-electron injection into silicon nanowire arrays. Angew Chem Int Edit, 2016, 128(14): 4653-4657.

[229] BAI S, JIANG J, ZHANG Q, et al. Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem Soc Rev ,2015, 44(10): 2893-2939.

[230] ZHOU X, ZHANG Y, WANG C, et al. Photo-Fenton reaction of graphene oxide: a new strategy to prepare graphene quantum dots for DNA cleavage. ACS Nano ,2012, 6(8): 6592-6599.

[231] CHEN X, ZHOU X, HAN T, et al. Stabilization and induction of oligonucleotide i-motif structure via graphene quantum dots. ACS Nano, 2012, 7(1): 531-537.

[232] NI H, WANG M, SHEN T, et al. Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing. ACS Nano, 2015, 9(2): 1913-1925.

[233] FU M, ZHAO A, HE D, et al. Colloidal crystal templates direct the morphologies of fabricated porous cuprous oxide particles. Chem Mater ,2014, 26(10): 3084-3088.

[234] SUN Y L, DONG W F, YANG R Z, et al.Dynamically tunable protein microlenses. Angew Chem Int Edit,2012, 51(7): 1558-1562.

[235] WANG R, TAN H, ZHAO Z, et al. Stable ZnO@ TiO2 core/shell nanorod arrays with exposed high energy facets for self-cleaning coatings with anti-reflective properties. J Mater Chem A ,2014, 2(20): 7313-7318.

[236] ZHANG L, BELOVA V, WANG H, et al. Controlled cavitation at nano/microparticle surfaces. Chem Mater ,2014, 26(7): 2244-2248.

[237] ZHU S, MENG Q, WANG L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Edit ,2013, 125(14): 4045-4049.

[238] ZHU S, ZHANG J, TANG S, et al. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to upconversion bioimaging applications. Adv Funct Mater ,2012, 22(22): 4732-4740.

[239] LIU Y, YAO D, SHEN L, et al. Alkylthiol-enabled Se powder dissolution in oleylamine at room temperature for the phosphine-free synthesis of copper-based quaternary selenide nanocrystals. J Am Chem Soc, 2012, 134(17): 7207-7210.

[240] WU Z, LIU J, GAO Y, et al. Assembly-induced enhancement of Cu nanoclusters luminescence with mechanochromic property. J Am Chem Soc, 2015, 137(40): 12906-12913.

[241] ZHANG H, LIU Y, YAO D, et al. Hybridization of inorganic nanoparticles and polymers to create regular and reversible self-assembly architectures. Chem Soc Rev, 2012, 41(18): 6066-6088.

[242] ZHU S, SONG Y, SHAO J, et al. Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units.Angew Chem Int Edit, 2015, 54(49): 14626-14637.

[243] CHEN Z, ZHANG H, DU X, et al. From planar-heterojunction to n-i structure: an efficient strategy to improve short-circuit current and power conversion efficiency of aqueous-solution-processed hybrid solar cells. Energ Environ Sci, 2013, 6(5): 1597-1603.

[244] ZHOU D, LIN M, LIU X, et al. Conducting the temperature-dependent conformational change of macrocyclic compounds to the lattice dilation of quantum dots for achieving an ultrasensitive nanothermometer. ACS Nano,2013, 7(3): 2273-2283.

[245] CHEN Z, ZHANG H, YU W, et al. Inverted hybrid solar cells from aqueous materials with a PCE of 3.61%. Adv Energ Mater,2013,3(4): 433-437.

[246] ZHU S, ZHAO X, SONG Y, et al. Beyond bottom-up carbon nanodots: citric-acid derived organic molecules. Nano Today, 2016, 11(2): 128-132.

[247] WU Z, LIU J, LI Y, et al. Self-assembly of nanoclusters into mono-, few-, and multilayered sheets via dipole-induced asymmetric van der waals attraction. ACSNano,2015, 9(6): 6315-6323.

[248] WU Z, LI Y, LIU J, et al. Colloidal self-assembly of catalytic copper nanoclusters into ultrathin ribbons. Angew Chem Int Edit,2014, 53(45): 12196-12200.

[249] DU X, CHEN Z, LI Z, et al. Dip-coated gold nanoparticle electrodes for aqueoussolution-processed large-area solar cells. Adv Energ Mater, 2014, 4(9): 1400135.

[250] WEI H, ZHANG H, SUN H, et al. Preparation of polymer-nanocrystals hybrid solar cells through aqueous approaches. Nano Today,2012, 7(4): 316-326.

[251] CHEN Z, ZHANG H, ZENG Q, et al. In situ construction of nanoscale CdTe-CdS bulk heterojunctions for inorganic nanocrystal solar cells. Adv Energ Mater,2014, 4(10): 400235.

[252] WEI H, JIN G, WANG L, et al. Synthesis of a water-soluble conjugated polymer based on thiophene for an aqueous-processed hybrid photovoltaic and photodetector device. Adv Mater,2014, 26(22): 3655-3661.

[253] WU Z, DONG C, LI Y, et al. Self-assembly of Au15 into single-cluster-thick sheets at the interface of two miscible high-boiling solvents. Angew Chem Int Edit ,2013, 125(38): 10136-10139.

[254] WEI H, ZHANG H, JIN G, et al. Coordinatable and high charge-carrier-mobility watersoluble conjugated copolymers for effective aqueous-processed polymer-nanocrystal hybrid solar cells and OFET applications. Adv Funct Mater, 2013, 23(32): 4035-4042.

[255] CHEN Z, LIU F, ZENG Q, et al. Efficient aqueous-processed hybrid solar cells from a polymer with a wide bandga. J Mater Chem A,2015, 3(20): 10969-10975.

[256] ZHOU D, LIU M, LIN M, et al. Hydrazine-mediated constructon of nanocrystal selfassembly materials. ACS Nano,2014, 8(10): 10569-10581.

[257] LIU F, CHEN Z, DU X, et al. High efficiency aqueous-processed MEH-PPV/CdTe hybrid solar cells with a PCE of 4.20%. J Mater Chem A, 2016, 4(3): 1105-1111.

[258] LIU Y, YAO D, YAO S, et al. Phosphine-free synthesis of heavy Co2+-and Fe2+-doped Cu2 SnSe3 nanocrystals by virtue of alkylthiol-assistant Se powder dissolution. J Mater Chem A,2013, 1(8): 2748-2751.

[259] LUO X, XIN W, YANG C, et al. Au-Edged CuZnSe2 heterostructured nanosheets with enhanced electrochemical performance. Small,2015, 11(29): 3583-3590.

[260] LI X, GUO X, CAO L, et al. Water-soluble triarylboron compound for ATP imaging in vivo using analyte-induced finite aggregation. Angew Chem Int Edit,2015, 53(30): 7809-7813.

[261] ZHAO Q, XIAO Z, ZHANG F, et al. Tailorable zero-phase delay of subwavelength particles toward miniaturized wave manipulation devices. Adv Mater,2015, 27(40): 6187-6194.

[262] WANG X, GU Y, XIONG Z, et al. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv Mater ,2014, 26(9): 1336-1342.

[263] WANG X, XIONG Z, LIU Z, et al. Exfoliation at the liquid/air interface to assemble reduced graphene oxide ultrathin films for a flexible noncontact sensing device. Adv Mater,2015, 27(8): 1370-1375.

[264] LI T, LUO H, QIN L, et al. Flexible capacitive tactile sensor based on micropatterned dielectric layer. Small,2016, 12(36): 5042-5048.

[265] LI G, WANG X, LIU L, et al. Controllable synthesis of 3D Ni (OH)2 and NiOnanowalls on various substrates for high-performance nanosensors. Small,2015, 11(6): 731-739.

[266] ZHANG X, ZHAO J, DOU J, et al. Flexible CMOS-like circuits based on printed P-Type and N-Type carbon nanotube thin-film transistors. Small, 2016, 12(36): 5066-5073.

[267] FENG P, XU W, YANG Y, et al. Printed neuromorphic devices based on printed carbon nanotube thin-film transistors. Adv Funct Mater,2017, 27(5): 1604447.

[268] JI J, ZHOU Z, YANG X, et al. One-dimensional nano-interconnection formation. Small,2013, 9(18): 3014-3029.

[269] GAO A, LU N, WANG Y, et al. Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. Nano Lett,2012,12(10): 5262-5268.

[270] QU X, ZHU D, YAO G, et al. An exonuclease III-powered, on-particle stochastic DNA walker. Angew Chem Int Edit,2017,56(7): 1855-1858.

[271] LIN M, SONG P, ZHOU G, et al .Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. Nat Protoc, 2016, 11(7): 1244.

[272] GAO A, ZOU N, DAI P, et al. Signal-to-noise ratio enhancement of silicon nanowires biosensor with rolling circle amplification. Nano Let, 2013, 13(9): 4123-4130.

[273] QU X, WANG S, GE Z, et al. Programming cell adhesion for on-chip sequential boolean logic functions. J Am Chem Soc,2017, 139(30): 10176-10179.

[274] ZHU D, PEI H, YAO G, et al. A surface-confined proton-driven DNA pump using a dynamic 3D DNA scaffold. Adv Mater,2016, 28(32): 6860-6865.

[275] YU X, WANG Y, ZHOU H, et al. Top-down fabricated silicon-nanowire-based fieldeffect transistor device on a (111) silicon wafer. Small,2013, 9(4): 525-530.

[276] OUYANG X, LI J, LIU H, et al.Rolling circle amplification-based DNA origami nanostructrures for intracellular delivery of immunostimulatory drugs. Small,2013, 9(18): 3082-3087.

[277] ZHAO B, SHEN J, CHEN S, et al. Gold nanostructures encoded by non-fluorescent small molecules in polyA-mediated nanogaps as universal SERS nanotags for recognizing various bioactive molecules. Chem Sci,2014, 5(11): 4460-4466.

[278] YAN J, HU C, WANG P, et al. Growth and origami folding of DNA on nanoparticles for high-efficiency molecular transport in cellular imaging and drug delivery. Angew Chem Int Edit,2015, 54(8): 2431-2435.

[279] ZHAO B, YAN J, WANG D, et al. Carbon nanotubes multifunctionalized by rolling circle amplification and their application for highly sensitive detection of cancer markers. Small,2013, 9(15): 2595-2601.

[280] YAO G, LI J, CHAO J, et al. Gold-nanoparticle-mediated jigsaw-puzzle-like assembly of supersized plasmonic DNA origami. Angew Chem Int Edit,2015, 54(10): 2966-2969.

[281] LAO Z, HU Y, ZHANG C, et al. Capillary force driven self-assembly of anisotropic hierarchical structures prepared by femtosecond laser 3D printing and their applications in crystallizing microparticles. Acs Nano ,2015, 9(12): 12060-12069.

[282] REN F, LI G, ZHANG Z, et al. A single-layer Janus membrane with dual gradient conical micropore arrays for self-driving fog collection. J Mater Chem A,2017, 5(35): 18403-18408.

[283] LI G, LU Y, WU P, et al. Fish scale inspired design of underwater superoleophobicmicrocone arrays by sucrose solution assisted femtosecond laser irradiation for multifunctional liquid manipulation. J Mater Chem A ,2015, 3(36): 18675-18683.

[284] YANG W, CHEN G, SHI Z, et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat Mater,2013, 12(9): 792.

[285] LI G, LU Y, WU P, et al. Fish scale inspired design of underwater superoleophobicmicrocone arrays by sucrose solution assisted femtosecond laser irradiation for multifunctional liquid manipulation. J Mater Chem A,2015, 3(36): 18675-18683.

[286] YANG W, CHEN G, SHI Z, et al. Watanabe, K., Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat Mater,2013, 12(9): 792.

[287] ZHANG J, YU H, CHEN W, et al. Scalable growth of high-quality polycrystalline MoS2 monolayers on SiO2 with tunable grain sizes. ACS Nano,2014, 8(6): 6024-6030.

[288] CHEN W, ZHAO J, ZHANG J, et al. Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. J Am Chem Soc,2015, 137(50): 15632-15635.

[289] SHI Z, JIN C, YANG W, et al. Gate-dependent pseudospin mixing in graphene/boron nitride moiré superlattices. Nat Phys,2014, 10(10): 743.

[290] HE C, LI J, WU X, et al. Tunable electroluminescence in planar graphene/SiO2 memristors. Adv Mater,2013, 25(39): 5593-5598.

[291] YANG W, LU X, CHEN G, et al. Hofstadter butterfly and many-body effects in epitaxial graphene superlattice. Nano Lett,2016, 16(4): 2387-2392.

[292] GALLAGHER P, LEE M, AMET F, et al. Goldhaber-Gordon, Switchable friction enabled by nanoscale self-assembly on graphene. Nat Commun,2016, 7 : 10745.

[293] ZHAO J, WANG G, YANG R, et al. Tunable piezoresistivity of nanographene films for strain sensing. Acs Nano,2015, 9(2): 1622-1629.

[294] WU S, LIU B, SHEN C, et al. Magnetotransport properties of graphene nanoribbons with zigzag edges. Phys Rev Lett,2018, 120(21): 216601.

[295] WANG D, CHEN G, LI C, et al. Thermally induced graphene rotation on hexagonal boron nitride. Phys Rev Lett,2016, 116(12): 126101.

[296] CHEN Z G, SHI Z, YANG W, et al. Observation of an intrinsic bandgap and Landau level renormalization in graphene/boron-nitride heterostructures. Nat Commun,2014, 5 : 4461.

[297] CHENG M, WANG D, SUN Z, et al. A route toward digital manipulation of water nanodroplets on surfaces. ACS Nano ,2014, 8(4): 3955-3960.

[298] XIE G, YANG R, CHEN P, et al. A general route towards defect and pore engineering in graphene. Small,2014,10(11): 2280-2284.

[299] YU H, YANG Z, DU L, et al. Precisely aligned monolayer MoS2 epitaxially grown on h-BN basal plane. Small,2017, 13(7): 1603005.

[300] LU X, YU M, WANG G, et al. Flexible solid-state supercapacitors: design, fabrication and applications. Energ Environ Sci,2014, 7(7): 2160-2181.

[301] LU X, ZENG Y, YU M, et al. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv Mater,2014, 26(19): 3148-3155.

[302] ZHAI T, LU X, LING Y, et al. A new benchmark capacitance for supercapacitor anodes by mixed-valence sulfur-soped V6O13-x. Adv Mater ,2014, 26(33): 5869-5875.

[303] BALOGUN M S, QIU W, WANG W, et al.Recent advances in metal nitrides as highperformance electrode materials for energy storage devices. J Mater Chem A,2015, 3(4): 1364-1387.

[304] ZHAI T, XIE S, YU M, et al. Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy,2014, 8 : 255-263.

[305] LU X, XIE S, YANG H, et al. Photoelectrochemical hydrogen production from biomass derivatives and water. Chem Soc Rev,2014, 43(22): 7581-7593.

[306] YU M, ZHANG Y, ZENG Y, et al. Water surface assisted synthesis of large-scale carbon nanotube film for high-performance and stretchable supercapacitors. Adv Mater,2014, 26(27): 4724-4729.

[307] YU M, HUANG Y, LI C, et al. Building three-dimensional graphene frameworks for energy storage and catalysis. Adv Funct Mater,2015, 25(2): 324-330.

[308] BALOGUN M S, YU M, HUANG Y, et al. Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries. Nano Energy,2015, 11 : 348-355.

[309] ZHAI T, LU X, WANG H, et al. An electrochemical capacitor with applicable energy density of 7.4 Wh/kg at average power density of 3000 W/kg. Nano Lett,2015, 15(5): 3189-3194.

[310] BALOGUN M S, YU M, LI C, et al. Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries. J Mater Chem A,2014, 2(28): 10825-10829.

[311] LIANG C, ZHAI T, WANG W, et al. Fe3O4/reduced graphene oxide with enhanced electrochemical performance towards lithium storage. J Mater Chem A ,2014, 2(20):7214-7220.

[312] XIE S, SU H, WEI W, et al. Remarkable photoelectrochemical performance of carbon dots sensitized TiO2 under visible light irradiation. J Mater Chem A,2014, 2(39): 16365-16368.

[313] MAO Y, YANG H, CHEN J, et al. Significant performance enhancement of ZnO photoanodes from Ni (OH)2 electrocatalyst nanosheets overcoating. Nano Energy, 2014, 6 : 10-18.

[314] XIE S, LI M, WEI W, et al. Gold nanoparticles inducing surface disorders of titanium dioxide photoanode for efficient water splitting. Nano Energy,2014, 10 : 313-321.

[315] LONG H, SHI T, JIANG S, et al. Synthesis of a nanowire self-assembled hierarchical ZnCo2O4 shell/Ni current collector core as binder-free anodes for high-performance Liion batteries. J Mater Chem A, 2014, 2(11): 3741-3748.

[316] XING J F, ZHENG M L, DUAN X M. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chem Soc Rev,2015, 44(15): 5031-5039.

[317] JI M,XU M, ZHANG W, et al. Structurally well-defined Au@ Cu2-xS core-shell nanocrystals for improved cancer treatment based on enhanced photothermal efficiency. Adv Mater ,2016, 28(16): 3094-3101.

[318] WANG A, JIANG L, LI X, et al. Mask-free patterning of high-conductivity metal nanowires in open air by spatially modulated femtosecond laser pulses. Adv Mater,2015, 27(40): 6238-6243.

[319] HUANG L, ZHENG J, HUANG L, et al. Controlled synthesis and flexible self-assembly of monodisperse Au@ semiconductor core/shell hetero-nanocrystals into diverse superstructures. Chem Mater,2017, 29(5): 2355-2363.

[320] FENG J, LIU J, CHENG X, et al. Hydrothermal cation exchange enabled gradual evolution of Au@ ZnS-AgAuS yolk-shell nanocrystals and their visible light photocatalytic applications. Adv Sci,2018, 5(1): 1700376.

[321] HUANG L, WAN X, RONG H, et al. Colloid-interface-assisted laser irradiation of nanocrystals superlattices to be scalable plasmonic superstructures with novel activities. Small,2018, 14(16): 1703501.

[322] LIU J, FENG J, GUI J, et al. Metal@ semiconductor core-shell nanocrystals with atomically organized interfaces for efficient hot electron-mediated photocatalysis. Nano Energy,2018, 48 : 44-52.

[323] PINCHETTI V, DI Q, LORENZON M, et al. Excitonic pathway to photoinduced magnetism in colloidal nanocrystals with nonmagnetic dopants. Nat Nanotec,2018, 13(2): 145.

[324] XIA J, ZHENG J, HUANG D, et al. New model to explain tooth wear with implications for microwear formation and diet reconstruction. P Natl A Sci, 2015, 112(34):10669-10672.

[325] CHEN L, WEN J, ZHANG P, et al. Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions. Nat Commun,2018, 9(1): 1542.

[326] YIN X, QUE M, XING Y, et al. High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer. J Mater Chem A,2015, 3(48): 24495-24503.

[327] YIN X, CHEN P, QUE M, et al. Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts. ACS Nano,2016, 10(3): 3630-3636.

[328] JIANG W, NIU D, LIU H, et al. Photoresponsive soft-robotic platform: biomimetic fabrication and remote actuation. Adv Funct Mater ,2014, 24(48): 7598-7604.

[329] RAN C, CHEN Y, GAO W, et al.One-dimensional (1D)[6, 6]-phenyl-C 61-butyric acid methyl ester (PCBM) nanorods as an efficient additive for improving the efficiency and stability of perovskite solar cells. J Mater Chem A, 2016, 4(22): 8566-8572.

[330] SHAO J, DING Y, WANG W, et al. Generation of fully-covering hierarchical micro-/nanostructures by nanoimprinting and modified laser swelling. Small,2014, 10(13): 2595-2601.

[331] CHEN X, LI X, SHAO J, et al. High-performance piezoelectric nanogenerators with imprinted P (VDF-TrFE)/BaTiO3 nanocomposite micropillars for self-powered flexible sensors. Small,2017,13(23): 1604245.

[332] LIU H, ZHAO T, JIANG W, et al. Flexible battery-less bioelectronic implants: sireless powering and manipulation by near-infrared light. Adv Funct Mater ,2015, 25(45): 7071-7079.

[333] HUANG Y, DING Y, BIAN J, et al. Hyper-stretchable self-powered sensors based on electrohydrodynamically printed, self-similar piezoelectric nano/microfibers. Nano Energy,2017, 40 : 432-439.

[334] LI X, TIAN H, SHAO J, et al. Decreasing the saturated contact angle in electrowettingon-dielectrics by controlling the charge trapping at liquid-solid interfaces. Adv Funct Mater ,2016, 26(18): 2994-3002.

[335] LIU Y H, XU J L, GAO X, et al. Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors. Energy Environ Sci,2017, 10(12): 2534-2543.

[336] ZHAN D, HAN L, ZHANG J, et al. Electrochemical micro/nano-machining: principles and practices. Chem Soc Rev,2017, 46(5): 1526-1544.

[337] ZHAO Q, WANG W, SHAO J, et al. Nanoscale electrodes for flexible electronics by swelling controlled cracking. Adv Mater,2016, 28(30): 6337-6344.

[338] LIU Y H, XU J L, SHEN S, et al. High-performance, ultra-flexible and transparent embedded metallic mesh electrodes by selective electrodeposition for all-solid-state supercapacitor applications. J Mater Chem A, 2017, 5(19): 9032-9041.

[339] ZHAN D, HAN L, ZHANG J, et al. Conined chemical etching for electrochemical machining with nanoscale accuracy. Accounts Chem Res, 2017, 49(11): 2596-2604.

[340] YANG Z, WANG M, QIU H, et al. Engineering the exciton dissociation in quantumconfined 2D CsPbBr3 nanosheet Films. Adv Func Mater ,2018, 28(14): 1705908.

[341] ZHANG J, ZHANG L, WANG W, et al. Contact electrification induced interfacial reactions and direct electrochemical nanoimprint lithography in n-type gallium arsenate wafer. Chem Sci,2017, 8(3): 2407-2412.

[342] WANG W, ZHANG J, WANG F, et al. Mobility and reactivity of oxygen adspecies on platinum surface. J Am Cheml Soc,2016, 138(29): 9057-9060.

[343] WANG C, SHAO J, TIAN H, et al.Step-controllable electric-field-assisted nanoimprint lithography for uneven large-area substrates. ACS Nano,2016, 10(4): 4354-4363.

[344] ZHANG J, DONG B Y, JIA J, et al. Electrochemical buckling microfabrication. Chem Sci 2016, 7(1): 697-701.

[345] HUANG D, ZHU Y, SU Y Q, et al. Dielectric-dependent electron transfer behaviour of cobalt hexacyanides in a solid solution of sodium chloride. Chem Sci,2015, 6(11): 6091-6096.

[346] LI X, XU C, WANG C, et al. Improved triboelectrification effect by bendable and slidable fish-scale-like microstructures. Nano Energy,2017, 40 : 646-654.

[347] CAO M, WANG M, LI L, et al. Wearable rGO-Ag NW@ cotton fiber piezoresistive sensor based on the fast charge transport channel provided by Ag nanowire. Nano Energ,2018, 50 : 528-535.

[348] LI X, SHAO J, KIM S K, et al. High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes. Nat Commun,2018,9(1): 2578.

[349] ZHOU L, XIANG H Y, SHEN S, et al. High-performance flexible organic light-emitting diodes using embedded silver network transparent electrodes. ACS Nano,2014, 8(12): 12796-12805.

[350] XIANG H Y, LI Y Q, ZHOU L, et al. Outcoupling-enhanced flexible organic lightemitting diodes on ameliorated plastic substrate with built-in indium-tin-oxide-free transparent electrode. ACS Nano,2015, 1(7): 7553-7562.

[351] QIAO W, HUANG W, LIU Y, et al. Toward scalable flexible nanomanufacturing for photonic structures and devices. Adv Mater, 2016, 28(47): 10353-10380.

[352] CHENG X, MENG B, ZHANG X , et al. Wearable electrode-free triboelectric generator for harvesting biomechanical energy. Nano Energy, 2015, 12 : 19-25.

[353] YANG T, WANG W, ZHANG H, et al. Tactile sensing system based on arrays of graphene woven microfabrics: electromechanical behavior and electronic skin application. ACS Nano ,2015, 9(11): 10867-10875.

[354] ZHANG J, WANG J, CHEN P, et al. Observation of strong interlayer coupling in MoS2/WS2 heterostructures. Adv Mater,2016, 28(10): 1950-1956.

[355] YANG T, LI X, JIANG X, et al. Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing. Mater Horiz, 2016, 3(3): 248-250.

[356] LU N, GAO A, DAI P, et al. CMOS-compatible silicon nanowire field-effect transistors for ultrasensitive and label-free microRNAs sensing. Small, 2014,10(10): 2022-2028.

[357] SONG Y, CHENG X, CHEN H, et al. Integrated self-charging power unit with flexible supercapacitor and triboelectric nanogenerator. J Mater Chem A,2016, 4(37): 14298-14306.

[358] HUANG H Y. Sulfuration-desulfuration reaction sensing effect of intrinsic ZnO nanowires for high-performance H2S detection. J Mater Chem A,2015, 3(12): 6330-6339.

[359] LIU Z, LI Z, LIU Z, et al. High-performance broadband circularly polarized beam deflector by mirror effect of multinanorodmetasurfaces. Adv Func Mater ,2015, 25(34): 5428-5434.

[360] CHEN X, SONG Y, SU Z, et al. Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring. Nano Energy,2015, 38 : 43-50.

[361] LIU Z, DU S, CUI A, et al. High-quality-factor mid-infrared toroidal excitation in folded 3D metamaterials. Adv Mater,2017, 29(17): 1606298.

[362] YU P, LI J, TANG C, et al. Controllable optical activity with non-chiral plasmonic metasurfaces. Light-Sci Appi,2016, 5(7): e16096.

[363] CHEN H, SU Z, SONG Y, et al. Omnidirectional bending and pressure sensor based on stretchable CNT-PU sponge. Adv Funct Mater,2017, 27(3): 1604434.

[364] YAN D, XU P, XIANG Q, et al. Polydopamine nanotubes: bio-inspired synthesis, formaldehyde sensing properties and thermodynamic investigation. J Mater Chem A ,2016, 4(9): 3487-3493.

[365] CUI A, LIU Z, DONG H, et al. Single grain boundary break junction for suspended nanogap electrodes with gapwidth down to 1~2 nm by focused ion beam milling. Adv Mater,2015, 27(19): 3002-3006.

[366] CHENG X, XUE X, MA Y, et al. Implantable and self-powered blood pressure monitoring based on a piezoelectric thinfilm: Simulated, in vitro and in vivo studies. Nano Energy,2016, 22 : 453-460.

[367] REN Y, ZHOU X, LUO W, et al. Amphiphilic block copolymer templated synthesis of mesoporous indium oxides with nanosheet-assembled pore walls. Chem of Mater,2016, 28(21): 7997-8005.

[368] XU P, GUO S, YU H, et al.Mesoporous silica nanoparticles (MSNs) for detoxification of hazardous organophorous chemicals. Small,2014, 10(12): 2404-2412.

[369] SHI M, WU H, ZHANG J, et al. Self-powered wireless smart patch for healthcare monitoring. Nano Energy,2014, 32 : 479-487.

[370] CHENG X, MIAO L, SONG Y, et al. High efficiency power management and charge boosting strategy for a triboelectric nanogenerator. Nano Energy, 2017, 38 : 438-446.

[371] CHEN H, MIAO L, SU Z, et al. Fingertip-inspired electronic skin based on triboelectric sliding sensing and porous piezoresistive pressure detection. Nano Energy, 2017, 40 : 65-72.

[372] SU Z, HAN M, CHENG X, et al. Asymmetrical triboelectric nanogenerator with controllable direct electrostatic discharge. Adv Funct Mater, 2016,26(30): 5524-5533.

[373] MENG J, WANG G, LI X, et al. Rolling up a monolayer MoS2 sheet. Small,2016, 12(28): 3770-3774.

[374] SONG Y, CHEN H, SU Z, et al. Highly compressible integrated supercapacitorpiezoresistance-sensor system with CNT-PDMS sponge for health monitoring. Small ,2017, 13(39): 1702091.

[375] ZHANG X S, HAN M, KIM B, et al. All-in-one self-powered flexible microsystems based on triboelectric nanogenerators. Nano Energy, 2018, 47 : 410-426.

[376] WU H, SU Z, SHI M, et al. Self-powered noncontact electronic skin for motion sensing. Adv Funct Mater,2018, 28(6): 1704641.

[377] SU Z, WU H, CHEN H, et al. Digitalized self-powered strain gauge for static and dynamic measurement. Nano Energy, 2017, 42 : 129-137.

[378] CHEN X, GUO H, WU H, et al. Hybrid generator based on freestanding magnet as alldirection in-plane energy harvester and vibration sensor. Nano Energy, 2018, 49 : 51-58.

[379] SU Z, CHEN H, SONG Y, et al. Microsphere-assisted robust epidermal strain gauge for static and dynamic gesture recognition. Small,2017, 13(47): 1702108.

[380] CHEN W, LIU Y, ZHANG Y, et al. Highly effective and specific way for the trace analysis of carbaryl insecticides based on Au 42 Rh 58 alloy nanocrystals. J Mater Chem A, 2017, 5(15): 7064-7071.

[381] LIU R, FAN S, XIAO D, et al. Free-standing single-molecule thick crystals consisting of linear long-chain polymers. Nano Lett,2017, 17(3): 1655-1659.

[382] GAO W, YANG B, LAWRENCE M, et al. Photonic Weyl degeneracies in magnetized plasma. Nat Commun, 2016, 7 : 12435.

[383] WANG L, LI Q, WANG H Y, et al. Ultrafast optical spectroscopy of surface-modified silicon quantum dots: unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence. Light-Sci Appl, 2015, 4(1): e245.

[384] WANG D, HAN D, LI X B, et al. Determination of formation and ionization energies of charged defects in two-dimensional materials. Phys Rev Lett, 2015, 114(19): 196801.

[385] WANG L, CHEN Q D, CAO X W, et al. Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing. Light-Sci Appl, 2017, 6(12): e17112.

[386] SUN Y L, SUN S M, WANG P, et al. Customization of protein single nanowires for optical biosensing. Small, 2015, 1(24): 2869-2876.

[387] ZHU S, MENG Q, WANG L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Edit , 2013, 52(14): 3953-3957.

[388] LU X, WANG G, ZHAI T, et al. Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett, 2012, 12(3): 1690-1696.

[389] JIANG J, ZHAO K, XIAO X, et al. Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. J Am Chem Soc, 2012, 134(10): 4473-4476.

[390] LIU B, ZHANG J, WANG X, et al. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett, 2012, 12(6): 3005-3011.

[391] LU X, YU M, WANG G, et al. H-TiO2@ MnO2//H-TiO2@C core-shell nanowires for high performance and flexible asymmetric supercapacitors. Adv Mater, 2013, 25(2): 267-272.

[392] LI X, CHOY W C, HUO L, et al. Dual plasmonic nanostructures for high performance inverted organic solar cells. Adv Mater, 2012, 24(22): 3046-3052.

[393] WANG G, LU X, LING Y, et al. LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors. ACS Nano, 2012, 6(11): 10296-10302.

[394] ZHU S, ZHANG J, TANG S, et al. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to upconversion bioimaging applications. Adv Funct Mater, 2012, 22(22): 4732-4740.

[395] WANG X, LU X, LIU B, et al. Flexible energy-storage devices: design consideration and recent progress. Adv Mater, 2014, 26(28): 4763-4782.

[396] LU X, YU M, WANG G, et al. Flexible solid-state supercapacitors: design, fabrication and applications. Energ Environ Sci,2014, 7(7): 2160-2181.

[397] ZHANG J, YU J, ZHANG Y, et al. Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett, 2011, 11(11): 4774-4779.

[398] LU X, ZHAI T, ZHANG X, et al. WO3-x@Au@MnO2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv Mater, 2012, 24(7): 938-944.

[399] LIU Q, GUO B, RAO Z, et al. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett, 2013, 13(6): 2436-2441.

[400] CHEN S, WU Q, MISHRA C, et al.Thermal conductivity of isotopically modified graphene. Nat Mater, 2012, 11(3): 203.

[401] YANG W, CHEN G, SHI Z, et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat Mater, 2013, 12(9): 792.

[402] XU J, WANG Q, WANG X, et al. Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@ RuO2 nanosheet arrays on carbon cloth. ACS Nano, 2013, 7(6): 5453-5462.

[403] CHEN Q, LUO M, HAMMERSHØJ P, et al. Microporous polycarbazole with high specific surface area for gas storage and separation. J Am Chem Soc, 2012, 134(14): 6084-6087.

[404] YIN X, CHEN P, QUE M, et al. Highly efficient flexible perovskite solar cells using solution-derived NiOx hole contacts. ACS Nano, 2016, 10(3): 3630-3636.

[405] XING J F, ZHENG M L, DUAN X M.Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chem Soc Rev, 2015, 44(15): 5031-5039.

[406] JIANG L, YANG J, WANG S, et al. Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity. Opt Lett, 2011, 36(19): 3753-3755.

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈